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ABSTRACT

Molecular complexes formed by proteins and small-molecule ligands are ubiquitous, and predicting
their 3D structures can facilitate both biological discoveries and the design of novel enzymes or
drug molecules. Here we propose NeuralPLexer, a deep generative model framework to rapidly
predict protein-ligand complex structures and their fluctuations using protein backbone template and
molecular graph inputs. NeuralPLexer jointly samples protein and small-molecule 3D coordinates
at an atomistic resolution through a generative model that incorporates biophysical constraints and
inferred proximity information into a time-truncated diffusion process. The reverse-time generative
diffusion process is learned by a novel stereochemistry-aware equivariant graph transformer that
enables efficient, concurrent gradient field prediction for all heavy atoms in the protein-ligand complex.
NeuralPLexer outperforms existing physics-based and learning-based methods on benchmarking
problems including fixed-backbone blind protein-ligand docking and ligand-coupled binding site
repacking. Moreover, we identify preliminary evidence that NeuralPLexer enriches bound-state-like
protein structures when applied to systems where protein folding landscapes are significantly altered
by the presence of ligands. Our results reveal that a data-driven approach can capture the structural
cooperativity among protein and small-molecule entities, showing promise for the computational
identification of novel drug targets and the end-to-end differentiable design of functional small-
molecules and ligand-binding proteins.

1 Introduction

Protein structures are dynamically modulated by their interactions with small-molecule ligands, triggering downstream
responses that are crucial to the regulation of biological functions [1–3]. Proposing ligands that selectively target protein
conformations has become an increasingly important strategy in small-molecule-based therapeutics [4–6]. However,
computational prediction of protein-ligand structures that are coupled to receptor conformational responses is still
hampered by the prohibitive cost of physically simulating slow protein state transitions [7, 8], as well as the static nature
of existing protein folding prediction algorithms [9, 10]. While several schemes have been proposed to remedy these
issues [11–20], such methods often require case-specific expert interventions and lack a unified framework to predict
3D structures in a systematic and cooperative fashion.

Here we propose NeuralPLexer, a Neural framework for Protein-Ligand complex structure prediction. NeuralPLexer
leverages diffusion-based generative modeling [21, 22] to sample 3D structures from a learned statistical distribution.
We demonstrate that the multi-scale inductive bias in biomolecular complexes can be feasibly integrated with diffusion
models by designing a finite-time stochastic differential equation (SDE) with structured drift terms. Owing to this
formulation, NeuralPLexer can generalize to ligand-unbound or predicted protein structure inputs once trained solely
on experimental protein-ligand complex structures that are not paired to alternative protein conformations. When
applied to blind protein-ligand docking, NeuralPLexer improves both the geometrical accuracy and structure quality
compared to baseline methods; when applied to ligand binding site design, an inpainting version of NeuralPLexer can
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Figure 1: NeuralPLexer enables protein-ligand complex structure prediction with full receptor flexibility. (a) Method
overview. (b) Sampling from NeuralPLexer. The protein (colored as red-blue from N- to C-terminus) and ligand
(colored as grey) 3D structures are jointly generated from a learned SDE, with a partially-diffused initial state qT∗
approximated by the protein backbone template and predicted interface contact maps. (c-e) Key elements of the
NeuralPLexer technical design. (c) Ligand molecules and monomeric entities are encoded as the collection of atoms,
local coordinate frames (depicted as semi-transparent triangles), and stereospecific pairwise embeddings (depicted as
dashed lines) representing their interactions. (d) The forward-time SDE introduces relative drift terms among protein
Cα atoms, non-Cα atoms and ligand atoms, such that the SDE erases local-scale details at t = T ∗ to enable resampling
from a noise distribution. (e) Information flow in the equivariant structure diffusion module (ESDM). ESDM operates
on a heterogeneous graph formed by protein atoms (P), ligand atoms (L), protein backbone frames (B) and ligand local
frames (F) to predict clean atomic coordinates x̂0, ŷ0 using the coordinates at a finite diffusion time t > 0.

accurately repack 44% of failed AlphaFold2 [9] binding sites with up to 60% success rate improvements compared to
the method in Rosetta [23]. Furthermore, NeuralPLexer only requires molecular graphs as ligand inputs, therefore can
enable end-to-end gradient-based design for functional small-molecules and ligand-binding proteins when coupled to
recently-proposed differentiable protein sequence [24–26] and molecular graph generators [27, 28].

2 Method

We assume the model inputs are a receptor protein backbone template containing the amino acid sequence s and (N,
Cα, C) atomic coordinates x̃ ∈ Rnres×3×3, and a set of ligand molecular graphs {Gk}Kk=1 containing atom/bond types
and stereochemistry labels (e.g., tetrahedral or E/Z isomerism [29]). We aim to sample (x,y) ∼ qφ(·|s, x̃, {G}) from
a generative model qφ with predicted 3D heavy-atom coordinates of the protein x ∈ Rn×3 and that of the ligands
y ∈ Rm×3. It can be understood as a conditional generative modeling problem for partially-observed systems.

NeuralPLexer adopts a two-stage architecture for protein-ligand structure prediction (Figure1a). The input protein
backbone template and molecule graphs are first encoded and passed into a contact predictor that iteratively samples
binding interface spatial proximity distributions for each ligand in {G}; the output contact map parameterizes the
geometry prior, a finite-time marginal of a designed SDE that progressively injects structured noise into the data
distribution. An equivariant structure diffusion module (ESDM) then jointly generates 3D protein and ligand structures
by denoising the atomic coordinates sampled from the geometry prior through a learned reverse-time SDE (Figure1b).

2.1 Protein-ligand structure generation with biophysics-informed diffusion processes

Diffusion models [22] introduce a forward SDE that diffuses data into a noised distribution and a neural-network-
parameterized reverse-time SDE that generate data by reverting the noising process. To motivate the design principles
for our biomolecular structure generator, we first consider a general class of linear SDEs known as the multivariate
Ornstein–Uhlenbeck (OU) process [30] for point cloud Z ∈ RN×3:

dZt = −ΘZtdt+ σdWt (1)

where Θ ∈ RN×N is an invertible matrix of affine drift coefficients and Wt is a standard 3N -dimensional Wiener
process. The forward noising SDEs used in standard diffusion models [31, 32] can be recovered by setting Θ = θI,
converging to an isotropic Gaussian prior distribution at the t→∞ (often expressed as t→ 1 with reparameterized
t [33]) limit. In contrast, we design a multivariate SDE with data-dependent drift matrix Θ(Z0) and truncate the SDE at
t = T ∗ <∞ such that the final state of forward noising process is a partially-diffused, structured distribution qT∗ that
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can be well approximated by a coarse-scale model. We propose a set of SDEs depicted by Figure1d and detailed in
Table A1, with separated lengthscale parameters σ1, σ2 such that the forward diffusion process erases residue-scale
local details but retains global information about protein domain packing and ligand binding interfaces, yielding the
following time-dependent transition kernels:

qt
(
xCα(t)|x(0),y(0)

)
= N

(
xCα(0);σ2

1 τ̃I
)

(2)

qt
(
xnonCα(t)− xCα(t)|x(0),y(0)

)
= N

(
e−τ̃

(
xnonCα(0)− xCα(0)

)
; 2σ2

1(1− e−2τ̃ )I
)

(3)

qt
(
y(t)− cTxCα(t)|x(0),y(0)

)
= N

(
e−τ̃

(
y(0)− cTxCα(0)

)
;σ2

1(1− e−2τ̃ )(I + cTc)
)

(4)

where we use an exponential schedule τ̃ = (σ2
min/σ

2
1)et with truncation T ∗ = 2 log(σ2/σmin). c is a softmax-

transformed contact map as detailed in Sec. 2.2, which attracts the diffused ligand coordinates y(t) towards binding
interface Cα atoms while preserving SE(3)-equivariance. We choose σ1 = 2.0 Å to match the average radius of
standard amino acids with task-specific σ2 > σ1 such that at t = T ∗: (a) the terms involving xnonCα(0) and y(0)
approximately vanishes thus are set to zeros to initialize the reverse-time SDE, and (b) the Cα-atom coordinate marginal
qT∗
(
xCα(t)|x(0)

)
is sufficiently close to which approximated by the backbone template qT∗

(
xCα(t)|x̃

)
, guided by

the theoretical result proposed in [34]. Proofs regarding SE(3)-equivariance are stated in the Appendix A.1.2.

2.2 Contact map prediction and sampling from the truncated reverse-time SDE

Given protein-ligand coordinates (x,y), we define the contact map L ∈ Rnres×m with matrix elements LAi =

log(
∑
j∈{A} e

−2α‖xj−yi‖
2∑

j∈{A} e
−α‖xj−yi‖2

) where j runs over all protein atoms in amino acid residue A and α = 0.2 Å
−1

. The term c in

(4) is then defined as cAi(L) = exp(LAi)∑
A exp(LAi)

. To sample from the reverse-time SDE, we use the contact predictor to

generate inferred contact maps L̂ and parameterize the geometry prior qT∗(·|x̃, L̂) - the initial condition of reverse-time
SDE - by replacing x(0) in qT∗ with the backbone template x̃ and the ligand-Cα relative drift coefficient c with the
predicted c(L̂). Note that in the general multivariate OU formulation, this corresponds to replacing the clean-data-
dependent drift coefficients Θ(Z0) by a model estimation Θ̂. To account for the multimodal nature of protein-ligand
contact distributions, the contact predictor models L as the logits of a categorical posterior distribution over a sequence
of one-hot observations {l}Kk=1 sampled for individual molecules in {G}. The forward pass of contact predictor ψ takes
an iterative form:

L̂k = ψ(

k∑
r=1

lr; s, x̃, {G}); lk = OneHot(Ak, ik); (Ak, ik) ∼ Categoricalnres×m(L̂k−1), ik ∈ Gk (5)

where k ∈ {1, · · · ,K} and we set L̂ ..= L̂K . All results reported in this study are obtained with K = 1 due to the
curation scheme of standard annotated protein-ligand datasets, but we note that the model can be readily trained on
more diverse structural databases with multi-ligand samples.

2.3 Architecture overview

Here we outline the key neural network design ideas and defer the featurization, architecture, and training details
to the Appendix. To enable stereospecific molecular geometry generation and explicit reasoning about long-range
geometrical correlations, NeuralPLexer hybridizes two types of elementary molecular representations (Figure1c): (a)
atomic nodes and (b) rigid-body nodes representing coordinate frames formed by two adjacent chemical bonds. For
small-molecule ligand encoding, we introduce a graph transformer with learnable chirality-aware pairwise embeddings
that are constructed through graph-diffusion-kernel-like transformations [35]; such pairwise embeddings are pretrained
to align with the intra-molecular 3D coordinate distributions from experimental and computed molecular conformers.
The protein backbone template encoding module and the contact predictor are built upon a sparsified version of invariant
point attention (IPA) adapted from AlphaFold2 [9] and are combined with standard graph attention layers [7, 36] and
edge update blocks.

The architecture of ESDM (Figure1e) is inspired by prior works on 3D graph and attentional neural networks for
point clouds [37, 38], rigid-body simulations [39] and biopolymer representation learning [9, 40–42]. In ESDM,
each node is associated with a stack of standard scalar features fs ∈ Rc and cartesian vector features fv ∈ R3×c

representing the displacements of a virtual point set relative to the node’s Euclidean coordinate t ∈ R3. A rotation
matrix R ∈ SO(3) is additionally attached to each rigid-body node. Geometry-aware messages are synchronously
propagated among all nodes by encoding the pairwise distances among virtual point sets into graph transformer blocks.
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Figure 2: Model performance on benchmarking problems. (a-d) Fixed-backbone blind protein-ligand docking. (a)
Success rates over the test dataset are plotted against the number of conformations sampled per protein-ligand pair; a
success is defined as the ligand RMSD being lower than given threshold for at least one of the sampled conformations.
Distributions of (b) the physical plausibility of sampled conformations as measured by the ligand heavy-atom steric
clash rate with receptor atoms and (c) the geometrical accuracy as measured by the ligand RMSD are plotted against the
number of ligand rotatable bonds, an indicatior of molecular flexibility. (d) Overlay of NeuralPLexer-predicted ligand
and side-chain structures on the ground-truth for a challenging example (PDB: 6MJQ). (e-g) Ligand-coupled binding
site repacking via diffusion-based inpainting. (e) A selected example (PDB:6TEL) where NeuralPLexer accurately
inpaints the binding site protein-ligand structure, while directly aligning AlphaFold2 prediction to the ground-truth
complex resulted in steric clashes between the ligand and binding site residues. (f) Summary of binding site accuracy
(measured by the all-atom lDDT-BS score) and ligand clash rate over the test dataset. 32 conformations are sampled for
each protein-ligand pair; dots indicates the median value and errorbars indicates 25% and 75% percentiles. (g) Success
rates compared to baseline methods. A success is defined as: lDDT-BS > 0.7, ligand RMSD < 2.0 Å, and clash rate =
0.0. The pink "true contact map" curves are obtained by initializing the geometry prior qT∗ using the true protein-ligand
contact map, while the gold curves are obtained by generating both protein and ligand conformations end-to-end.

Explicit non-linear transformation on vector features fv is solely performed on rigid-body nodes through a coordinate-
frame-inversion mechanism, such that the node update blocks are sufficiently expressive without sacrificing equivariance
or computational efficiency. On the contrary, 3D coordinates are solely updated for atomic nodes while the rigid-body
frames (t,R) are passively reconstructed according to the updated atomic coordinates, circumventing numerical issues
regarding fitting quaterion or axis-angle variables when manipulating rigid-body objects. The nontrivial actions of a
parity inversion operation on rigid-body nodes ensure that ESDM can capture the correct chiral-symmetry-breaking
behavior that adheres to the molecular stereochemistry constraints.

3 Results

Fixed-backbone protein-ligand docking. In this setting the ground-truth receptor protein backbone is given as input
x̃, and both ligand coordinates and protein sidechain coordinates are predicted using the input protein backbone and
ligand graphs. Results are compared to a recent learning-based method EquiBind [43]; for reference, we also include
results from a physics-based blind docking method CB-Dock [44] obtained with ground-truth all-atom receptor inputs
and using a computing budget similar to learning-based methods. Models are trained and tested on the PDBBind-
2020 [45] dataset split used in [43], with additional test dataset processing to ensure a reasonable comparison to
docking-based methods (see Appendix A.8.1). As shown in Figure 2a-c, NeuralPLexer achieves both improved
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Figure 3: Assessments on systems with large binding-induced protein conformational transitions. Apo protein structures
are used as the input backbone template. (a) Summary statistics of the relative protein folding similarity with respect
to apo and holo PDB (measure by ∆TM-Score, the difference between TM-Scores computed against holo and apo
structures) and binding site similarity with respect to holo (measured by lDDT-BS) for sampled structures. Purple dots
are obtained with protein-only inputs and gold dots are obtained using protein+ligand inputs. Ligand-conditioning
increases average ∆TM-Score from -9.0% to -7.7% (p=0.03), and average lDDT-BS from 0.59 to 0.63 (p<0.001).
(b-c) Two examples for which neither their holo nor apo reference structures were observed during training. A
marginal improvement in ∆TM-Score or lDDT-BS may indicate substantial protein conformational differences, while
NeuralPLexer can qualitatively capture the correct protein state transitions.

geometrical accuracy (reported as the ligand heavy atom root-mean-squre-deviation (RMSD)) and lower steric clash
rate (the fraction of ligand heavy atoms with a Lennard-Jones energy > 100 kcal/mol, using UFF [46] parameters). We
found that good ligand structure quality and geometrical accuracy can be achieved using as few as 10 integrator steps
(0.2 second per conformation on a single V100 GPU).

Ligand-coupled binding site repacking. Here we apply a diffusion-based inpainting strategy to jointly sample
ligand and protein structure for a cropped region within 6.0 Å of the ligand conditioning on the uncropped parts of
the protein. Protein binding site accuracy is measured by the lDDT-BS metric [47] with cutoff parameters consistent
with CAMEO [48]. Input backbones are obtained using template-free AlphaFold2 (AF2) predictions of 154 selected
chains whose TM-score [49]>0.8 and lDDT-BS<0.9 out of the abovementioned PDBBind test set, a subset representing
cases where AF2 correctly predicts the global protein folding but unable to reproduce the exact bound-state binding site
structure. We found 82% of structures contain steric clash with the ligand when directly aligned to reference complex
structure in PDB, while NeuralPLexer is able to rescue 44% of these AF2 binding sites with joint protein-ligand
inpainting (Figure 2e-g). Comparing to an energy-based flexible ligand-receptor modeling method RosettaLigand [23],
NeuralPLexer increases success rate by up to 60% on the combined metric for ligand accuracy, binding site accuracy
and physical plausibility.

Cryptic pockets and binding-induced protein conformation transitions. Lastly, we assessed NeuralPLexer-
sampled structures for 31 systems from the PocketMiner dataset [50] which represents proteins with substantial
ligand-binding-induced conformation changes. As a preliminary examination, we use the ligand-unbound (apo) crystal
structure from PDB as the input backbone template and fix the ligand conformation to ground-truth coordinates along
sampling. We found NeuralPLexer shifts the sampled ensemble toward bound-state (holo) structures when perform-
ing joint protein-ligand generation, compared to unconditioned protein-only sampling results (Figure 3a). Human
evaluations reveal that NeuralPLexer correctly predicts biologically-relevant motions as illustrated by examples in
Figure 3b-c, but a more systematic examination is currently hampered by the sensitivity of TM-Score and lDDT-BS to
binding-irrelevant fluctuations. We note that native contact analysis algorithms [51] may provide improved metrics for
interpreting protein generative models and consider that a future direction.

4 Discussion

We have presented a learning-based method for dynamic-backbone protein-ligand structure prediction, establishing
an accuracy and sampling efficiency advantage relative to baseline approaches. We anticipate the incorporation of
state-of-the-art protein representation learning techniques such as the use of sequence evolutionary signals, pretrained
language models or higher-level attention mechanisms [9, 24, 25] and training on large-scale structure datasets to
further improve the methodology and facilitate applications in various downstream molecular design problems.
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Table A1: Summary of the forward-time SDEs with a constant effective diffusion coefficient (σ(τ) = σ).

Atom type SDE Expression Approximate marginal at t = T ∗

Receptor Cα dxCα = σdw1 qT∗
(
xCα|x(0),y(0)

)
= N (xCα(0);σ

2
2I)

Receptor non-Cα dxnonCα = θ(xCα − xnonCα)dτ + σdw2 qT∗
(
xnonCα − xCα|x(0),y(0)

)
= N (0; 2σ2

1I)
Ligand atoms dy = θ(cTxCα − y)dτ + σdw3 qT∗

(
y − cTxCα|x(0),y(0)

)
= N (0;σ2

1(I+ cTc))

A Appendix

A.1 The forward-time and reverse-time SDEs

The forward-time SDEs in NeuralPLexer are summarized in Table A1. For generality, we introduce an effective time
stamp τ such that the drift and diffusion coefficients are constant θ(t) = θ, σ(τ) = σ. The symbolic conventions are as
following:

• xCα ∈ Rnres×3 denotes the collection of alpha-carbon coordinates in the protein, following the standard
nomenclature for amino acid atom types:

• xnonCα ∈ R(n−nres)×3 denotes the set of coordinates for all non-alpha-carbon protein atoms (backbone N, C,
O, and all side-chain heavy atoms);

• y ∈ Rm×3 denotes all ligand heavy atom coordinates. Note that m ..=
∑K
k=1mk with mk being the number

of heavy atoms in each ligand molecule Gk.

A.1.1 Transition kernel densities and sampling

Following the general result for Ornstein–Uhlenbeck processes [52]

q0:t(xt) = N (exp(−Θt)x0;

∫ t

0

eΘ(s−t)σσTeΘT(s−t)ds) (6)

given the effective time-homogeneous diffusion process described in Table A1, for internal coordinates xnonCα−xCα:

d(xnonCα − xCα) = −θ(xnonCα − xCα)dτ + σdw2 − σdw1 (7)

since the Brownian motions w1,w2 are independent, we obtain the transition kernel for the a finite time interval s:

q(xnonCα(τ + s)− xCα(τ + s)|xnonCα(t)− xCα(τ)) (8)

= N
(
e−θs(xnonCα(τ)− xCα(τ)); (1− e−2θs)

σ2

θ2
I
)

Similarly, for the ligand degrees of freedom

d(y − cTxCα) = −θ(y − cTxCα)dt+ σdw3 − σcTdw1 (9)

the transition kernel is

q(y(τ + s)− cTxCα(τ + s)|y(τ)− cTxCα(τ)) (10)

= N
(
e−θs(y(τ)− cTxCα(τ)); (1− e−2θs)

σ2

2θ2
(I + cTc)

)
The transition kernel for alpha-carbon atoms is a standard Gaussian

q(xCα(τ + s)|xCα(τ)) = N
(
xCα(τ);σ2sI

)
. (11)

Defining σ2
1 = σ2

2θ , σ2
2 = σ2 · τ(T ∗), and τ̃ = 2θτ , we recover (2-4). For model training in practice, we use an

exponential noise schedule defined by τ = τ0e
t and τ0 =

σ2
min

σ2 with σmin being a minimum perturbation scale as
commonly adopted in variance-exploding (VE) [22] SDEs. For completeness, the SDEs defined in the transformed
time horizon t ∈ [0, T ∗] is given by replacing the drift coefficient θ and the diffusion coefficient σ with the following
time-dependent counterparts:

θ(t) = θ · dτ
dt

=
σ2

min

2σ2
1

et (12)
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and

σ(t) =

√
σ2 · dτ

dt
= σmine

1
2 t. (13)

To sample from the marginal distribution qt ..= pdata ∗ q0:t derived from the forward SDEs:
z1, z2, z3 ∼ N (0; I) (14)

(x,y) ∼ pdata (15)

xCα(t) = xCα + σ
√
τ(t)z1 (16)

xnonCα(t) = xCα(t) +
√
α(t)(xnonCα − xCα) +

√
1− α(t)σ1(z2 − z1) (17)

y(t) = cTxCα(t) +
√
α(t)(y − cTxCα) +

√
1− α(t)σ1(z3 − cTz1) (18)

where α(t) = e−2θτ(t).

For the reverse-time SDE
dZt = [−Θ(t)Zt − σ2(t)∇Zt log qt(Zt)]dt+ σ(t)dWt (19)

the ESDM φ predicts the denoised observations x̂(0), ŷ(0) using x̂(t), ŷ(t) which is formally equivalent to estimating
the score function ∇Z log qt(Z) [53]. Given a time discretization schedule with interval s, we obtain the expression for
the predicted observation mean Z̄(φ, t− s) in one denoising step Z(t) 7→ Z(t− s):

x̄Cα(φ, t− s) = −(xCα(t)− x̂Cα(0))
σ(t− s)
σ(t)

+ xCα(t) (20)

x̄nonCα(φ, t− s) = −
(xnonCα(t)− xCα(t))/

√
α(t)− (x̂nonCα(0)− x̂Cα(0))√

1− α(t)

√
1− α(t− s) (21)

+ x̄Cα(t− s) +
√
α(t− s)(x̂nonCα(0)− x̂Cα(0))

ȳ(φ, t− s) = −
(y(t)− cTxCα(t))/

√
α(t)− (ŷ(0)− cTx̂Cα(0))√

1− α(t)

√
1− α(t− s) (22)

+ cTx̄Cα(t− s) +
√
α(t− s)(ŷ(0)− cTx̂Cα(0))

standard ODE-based or SDE-based integrators can then be adapted to sample from (19).

A.1.2 Euclidean equivariance

Given groupG, a function f : X → Y is said to be equivariant if for all g ∈ G and x ∈ X , f(ϕX(g)·x) = ϕY (g)·f(x).
Specifically f is said to be invariant if f(ϕX(g)·x) = f(x). We are interested in the special Euclidean groupG = SE(3)
consists of all global rigid translation and rotation operations g · Z ..= t + Z ·R where t ∈ R3 and R ∈ SO(3). To
adhere to the physical constraint that pdata is always SE(3)-invariant, the transition kernels of forward-time SDE should
satisfy SE(3)-equivariance q(Zt+s|Zt) = q(g · Zt+s|g · Zt) such that the marginals are invariant qt(Zt) = qt(g · Zt)
for any time t. The proofs are straightforward:

For receptor Cα degrees of freedom
q(t + xCα(τ + s) ·R|t + xCα(τ) ·R)

= N
(
t + xCα(τ + s) ·R; t + xCα(τ) ·R, σ2sI

)
= N

(
(xCα(τ + s)− xCα(τ)) ·RRT; 0, σ2sR · I ·RT

)
= N

(
(xCα(τ + s)− xCα(τ)); 0, σ2sI

)
= q(xCα(τ + s)|xCα(τ)).

For receptor non-Cα degrees of freedom
q((t + xnonCα(τ + s) ·R− t− xCα(τ + s) ·R)|(t + xnonCα(τ) ·R− t− xCα(τ) ·R))

= N
(
(xnonCα(τ + s) ·R− xCα(τ + s) ·R); e−θs(xnonCα(τ) ·R− xCα(τ) ·R), (1− e−2θs)

σ2

θ2
I
)

= N
(
(xnonCα(τ + s)− xCα(τ + s)); e−θs(xnonCα(τ)− xCα(τ)), (1− e−2θs)

σ2

θ2
R · I ·RT

)
= q((xnonCα(τ + s)− xCα(τ + s)|(xnonCα(τ)− xCα(τ))).
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For ligand degrees of freedom

q(t + y(τ + s) ·R− cT(t + xCα(τ + s) ·R)|t + y(τ) ·R− cT(t + xCα(τ) ·R))

= q(t + y(τ + s) ·R− cTt− cTxCα(τ + s) ·R|t + y(τ) ·R− cTt− cTxCα(τ) ·R)

= q(y(τ + s) ·R− cTxCα(τ + s) ·R|y(τ) ·R− cTxCα(τ) ·R)

= N
(
e−θs(y(τ)− cTxCα(τ)); (1− e−2θs)

σ2

2θ2
R · (I + cTc) ·RT

)
= q(y(τ + s)− cTxCα(τ + s)|y(τ)− cTxCα(τ))

where we have used cTt = t up to a column-wise broadcasting operation based on the row-wise normalization property
of the softmax-transformed contact map c.

Since all transition kernels are SE(3)-equivariant, it then follows that the score ∇Z log qt(Z) is also SE(3)-equivariant:
∇Z′ log qt(Z

′) = ∇Z log qt(Z) ·R where Z′ = t + Z ·R and thus the reverse-time SDE is equivariant. While the
forward SDE is also E(3)-equivariant as the noising process satisfies q(−Z(τ + s)| −Z(τ)) = q(Z(τ + s)|Z(τ)), it is
worth noting that the reverse SDE is only SE(3)-equivariant as parity-inversion transformations i : Z 7→ −Z on the
data distribution pdata is physically forbidden and thus the score ∇Z log qt(Z) is of broken chiral symmetry in general:
∃Z such that∇−Z log qt(−Z) 6= −∇Z log qt(Z).

A.2 Small-molecule featurization and encoding

We consider two types of nodes to construct a graph-based molecular representation: (a) heavy-atoms i ∈
{1, 2, · · · , Natom} and (b) local coordinate frames u ∈ {1, 2, · · · , Nframe}, u ..= u(ijk) formed by atom triplets
(i, j, k) that are connected by bonds (ij) and (jk). We introduce Path-integral Graph Transformer (PiFormer), an
attentional neural network with edge-level operations inspired by the path-integral formulation of quantum mechanics,
to infer the long-range inter-atomic geometrical correlations for small molecules based on their graph-topological
properties. PiFormer operates on the collection of following classes of embeddings:

• Atom representations H ∈ RNatom×c. The input atom representations is a concatenation of one-hot encodings
of element group index and period index for the given atom, which is embedded by a linear projection layer
R18+7 → Rc;

• Frame representations F ∈ RNframe×c. For a given frame u, Fu is initialized by a 2-layer MLP R4∗2+18+7 →
Rc that embed the bond type encodings (defined as [is_single, is_double, is_triple, is_aromatic]) of the
"incoming" bond (i(u), j(u)), "outgoing" bond (j(u), k(u)), and the atom type encoding of the center atom
j(u);

• Stereochemistry encodings S ∈ RNframe×Nframe×cs . S is a sparse tensor where an element Suv is nonzero only
if the pair of frames (u, v) is adjacent, i.e., u and v sharing a common incoming or outgoing bond;

• Pair representations G ∈ RNframe×Natom×cp . G is initialized by an outer sum of H and F which is added to
linear-projected S and passed to a 2-layer MLP.

Elements of the stereochemistry encoding tensor S are defined as

Suv,0 ..= (common_bond(u, v) = incoming_bond(u))

Suv,1 ..= (common_bond(u, v) = incoming_bond(v))

Suv,2 ..= (common_bond(u, v) = outgoing_bond(u))

Suv,3 ..= (common_bond(u, v) = outgoing_bond(v))

Suv,4 ..= i(v) ∈ {i(u), j(u), k(u)}
Suv,5 ..= j(v) ∈ {i(u), j(u), k(u)}
Suv,6 ..= k(v) ∈ {i(u), j(u), k(u)}
Suv,7 ..= (j(u) = j(v)) ∧ is_above_plane(u, v)

Suv,8 ..= (j(u) = j(v)) ∧ is_below_plane(u, v)

Suv,9 ..= is_double_or_aromatic(common_bond(u, v)) ∨ is_same_side(u, v)

Suv,10
..= is_double_or_aromatic(common_bond(u, v)) ∨ not_same_side(u, v)
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Table A2: Composition of the dataset used for pretraining the small-molecule encoder.

Data source Num. samples collected Sampling weight L3D LCC LMLM

BioLip [55] ligands
(deposited date<2019.1.1) 160k 2.0 + - +

GEOM [56] 450k * 5 0.4 + - +
DES370k [57] 370k 1.0 + - +

PEPCONF [58] 3775 5.0 + - +
PCQM4Mv2 [59, 60] 3.4M 0.1 + - +

Chemical Checker [61] 800k 1.0 - + +

is_above_plane(u, v) is defined as one of the three atoms in frame v is above the plane formed by frame u with normal
vector vu =

(rj(u)−ri(u))×(rk(u)−rj(u))
‖rj(u)−ri(u)‖‖rk(u)−rj(u)‖

; is_same_side(u, v) is defined as the two bonds not shared between u, v being
on the same side of the common bond, equivalent to vu · vv > 0, vice versa. Our current technical implementations for
is_above_plane and is_same_side are based on computing the normal vectors and dot-products using the coordinates
from an auxiliary conformer, but we note that in principle all stereochemistry encodings can be generated based on
cheminformatic rules without explicit coordinate generations. We additionally denote MASKs as a Nframe ×Nframe

logical matrix defined as the adjacency matrix of frame pairs (u, v).

The notion of "frames" in a coordinate-free topological molecular graph is justified by the inductive bias that most
bending and stretching modes in molecular vibrations are of high frequency, i.e., most bond lengths and bond angles
fall into a small range as predicted by valence bond theory, such that the local frames forms a consistent molecular
representation without prior knowledge on 3D coordinates. PiFormer operates solely on the molecular representation
defined by the input graph, and the frame coordinates (t,R) are initialized right before the ESDM blocks.

The forward pass of single PiFormer block is expressed as:

Ul = Softmaxrow−wise

( (F ·WK,l) · (F ·WQ,l)
T + S ·WS,l√

cP
+ Inf ·MASKs

)
(23)

Gout = (1 +
1

K
Ul)

K · (Gl ·WG,l), Gl+1 = MLP([Gout||(Fl)T ·Hl||Gl]) + Gl (24)

Fout = MHAwithEdgeBias(Fl,Hl, (Gl+1)T), Fl+1 = MLP(Fout + Fl) + Fl (25)
Hout = MHAwithEdgeBias(Hl,Fl+1,Gl+1), Hl+1 = MLP(Hout + Hl) + Hl (26)

where K denotes the propagation length truncation for the learnable graph kernel exp(Ul) ≈ (1 + 1
KUl)

K in
a single PiFormer block, MLP denotes a 3-layer multilayer perceptron combined with layer normalization [54].
WK,WQ,WS,WG are trainable linear weight matrices. MHAwithEdgeBias(X1,X2,Xedge) denotes a multi-head
cross-attention layer between source node embeddings X1 and target node embeddings X1, with edge embeddings
Xedge entering attention computation as a relative positional encoding term as in the relation-aware transformer
introduced in [7]. For all models descibed in this study, we set lmax = 6 and K = 8.

A.2.1 PiFormer model pretraining

In Table A2 we summarize the small-molecule datasets used for training the PiFormer encoder used in the reported
NeuralPLexer model. The loss function used in PiFormer pretraining is the following:

Llig−pretraining = L3D−marginal + L3D−DSM + LCC−regression + 0.01 · LCC−ismask + 0.1 · LMLM (27)

We use a mixture density network head to encourage alignment between the learned last-layer pair representations G
and the intra-molecular 3D coordinate marginals. For a single training sample with 3D coordinate observation y:

L3D−marginal =

Nframe∑
u

Natom∑
i

log
[Nmodes∑

l

exp(wiul) · q3D(T−1
u ◦ yi|miul)∑Nmodes

l exp(wiul)

]
(28)

where Tu ..= (Ru, tu), T−1
u ◦ yi ..= (yi − tu) ·RT

u . tu ∈ R3 and Ru ∈ SO(3) are given by

(Ru, tu) = rigidFrom3Points(yi(u),yj(u),yk(u)) (29)

where rigidFrom3Points is the Gram–Schmidt-based frame construction operation described in Ref. [9], Alg. 21;
we additionally add a numerical stability factor of 0.01 Å to the vector-norm calculations to handle edge cases when

12



Dynamic-Backbone Protein-Ligand Structure Prediction with Multiscale Generative Diffusion Models

Figure 1: Network architecture schematics for the encoders and contact prediction modules.

computing the rotation matrices from perturbed coordinates. Each component the 3D distance-angle distribution q3D is
parameterized by

q3D(t|µ, σ,v) = Gaussian(‖t‖2|µ, σ)× PowerSpherical(
t

‖t‖2
|v, d = 3) (30)

where PowerSpherical is a power spherical distribution introduced in [62]; miul
..= (µ, σ,v)iul, and

[wiu,miu] = 3DMixtureDensityHead
(
Glmax

)
iu
. (31)

whre 3DMixtureDensityHead is a 3-layer MLP.

Using an equivariant graph transformer similar to ESDM (see Sec. A.6) but with all receptor nodes dropped, we construct
a geometry prediction head to perform global molecular 3D structure denoising. We sample noised coordinates y(t)
from a VPSDE [22] and introduce a SE(3)-invariant denoising score matching loss based on the Frame Aligned Point
Error (FAPE) [9]:

L3D−DSM = Et∼(0,1],yt∼q0:t(·|y)

[
meanu,i min(‖T−1

u ◦ yi − T̂−1
u ◦ ŷi‖2, 10 Å) ·

√
αt
]

(32)

where
ŷ = GeometryPredictionHead(yt;Hlmax ,Flmax ,Glmax) (33)

LCC−regression is a mean squared loss for fitting the "level 1" chemical checker (CC) [61] embeddings which represents
harmonized and integrated bioactivity data, and LCC−ismask is an auxiliary binary cross entropy loss for classifying
whether a specific CC entry is available for any molecule in the chemical checker dataset. Model is trained for 20
epochs with 15% masking ratio for atom and bond encodings, 40% masking ratio for stereochemistry encodings, and
dropout=0.1; LMLM is a standard cross-entropy loss for predicting the masked tokens which is added to encourage
learning on molecular graph topology distributions, but empirically we found LMLM converged within the first two
epochs and did not find it to influence the learning dynamics of other tasks.

A.3 Protein sequence and backbone encoding

The inputs to the protein encoder are (i) the one-hot amino-acid type (20 standard residues + 1 "unknown" token)
encoding of the 1D sequence s, (ii) the backbone (N,Cα,C) coordinates of a perturbed protein structure x(t) sampled
from the forward SDEs described in Table A1, and (iii) a random Fourier encoding of the diffusion time step t. To reduce
memory cost, the protein backbone is represented as a sparse graph with each node mapped to each amino acid residue
and randomized edges according to the inclusion probability p(add_edge(i, j)) = exp(−‖xi(t)− xj(t)‖/10.0 Å) for
all residue pairs (i, j). The edge representations are initialized as a random Fourier encoding of the signed sequence
distance between two residues (i, j) if i and j are located on the same chain, and are initialized as zeros if (i, j) are
located on different chains.

The protein encoder is composed of 4 stacks of invariant point attention (IPA) [9] blocks with two technical modifica-
tions:

• The attention scores are computed on the sparsified protein graph, instead of the densely-connected graph as
in standard self-attention layers;
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• Each node i is associated with nhead replicas of coordinate frames {T}i, instead of a single frame as in a
static structure representation. {T}i is initialized as nhead copies of the backbone frames constructed by
rigidFrom3Points(xN,i,xCα,i,xC,i). The layer output is nhead×7 scalars representing the translation vector
and the quaternion variable to update the frame associated with each attention head.

the multi-replica design is found to moderately improve model convergence at a fixed network size. For conciseness,
we refer to the modified invariant point attention as GraphIPA.

A.4 Contact predictor

As illustrated in Figure 1, the embeddings from the protein and small-molecule ligand graph encoders are passed to the
contact predictor to estimated the contact maps L. A protein-ligand graph is created before the contact predictor forward
pass, with pairwise intermolecular edges connecting all protein residues and ligand atoms. The contact predictor
is composed of 4 modules each comprises of an intra-protein GraphIPA block, a bidirectional intra-ligand-graph
self-attention layer, a bidirectional self-attention layer on the protein-ligand intermolecular edges, and a MLP to update
protein-ligand edge representations using the attention maps and previous-layer edge representations. The final edge
representations are used to predict L as described by Equation 5. The contact predictor weights are shared across all
one-hot contact matrix sampling iterations.

A.5 All-atom graph featurization

All protein heavy-atoms nodes (features and 3D coordinates) and the ligand 3D coordinates sampled from the geometry
prior qT∗ are added to the network inputs right before the ESDM block forward pass. Each protein atom representation
is initialized as the concatenation of:

• The residue-wise representation from the protein backbone encoder;

• An one-hot encoding of its atom type as defined by the 37 standard amino acid heavy atom symbols in the
PDB format [63];

• A random Fourier encoding of the diffusion time step t.

A random Fourier encoding of the diffusion time step t is also concatenated to the ligand atom representations from the
ligand graph encoder and are transformed by a 2-layer MLP.

Given the noised all-atom protein coordinates at diffusion time t, the following edges are added to the protein-ligand
graph:

• Edges connecting a protein atom node and the residue node that the protein atom belongs to;

• Edges connecting two protein atom nodes that are within the same residue;

• Edges connecting two protein atom nodes that are within 6.0 Å distance;

• Edges connecting a protein atom node and a ligand atom node that are within 8.0 Å distance;

The protein-atom-involving edges are initialized as a concatenation of the following features:

• A boolean code indicating whether the source node and target node belong to the same residue or the same
ligand molecule;

• A boolean code indicating whether there is a covalent bond between the source and target nodes. The covalent
bonding information for protein-ligand edges are resolved based on the reference protein-ligand complex
structure, where an atom pair (i, j) is considered as a covalent bond if the distance satisfies dij < 1.2σij
where σij = 1

2 (σi + σj) is the average Van der Waals (VdW) radius for the atom pair.

To focus the learning problem on binding-site parts of the protein-ligand complex structure, the following native
contact encoding features are added to the protein sub-graph that do not involve residues that are within 6.0 Å of any
ligand heavy atom; given two amino acid residues, we define the native contact encoding as the concatenation of
clean-protein-structure N−N, Cα− Cα, and C− C distances discretized into [2.0 Å, 4.0 Å, 6.0 Å, 8.0 Å] bins. Such
features are embedded by a 2-layer MLP and added to the residue-residue edge representations. Note that at training
time the native contact encodings are computed from the protein structure in the ground-truth protein-ligand complex,
while at sampling time they are computed from the input backbone template.

14



Dynamic-Backbone Protein-Ligand Structure Prediction with Multiscale Generative Diffusion Models

Figure 2: Network architecture of a single block in the equivariant structure diffusion module (ESDM). Arrows indicate
information flow directions, and "+" indicates an element-wise tensor summation.

A.6 The ESDM architecture

The neural network architecture of the proposed equivariant structure diffusion module (ESDM) is summa-
rized in Figure 2. The forward pass expression of the trainable modules PointSetAttentionwithEdgeBias,
LocalUpdateUsingChannelWiseGating, LocalUpdateUsingReferenceRotation, PredictDrift are defined as:

f ′s, f
′
v, e
′ = PointSetAttentionwithEdgeBias(fs, fv, e, t) where (34)

fQ, fK, fV = Ws · fs, tQ, tK, tV = (t/10 Å + fv ·Wv) (35)

zij =
1

√
chead

(fT
Q,i · fK,j) + We · eij −

wij√
18chead

‖tQ − tK‖22 (36)

αij = Softmaxj∈{i}(zij), e′ = MLP(zij) (37)

f ′s =
∑
j∈{i}

αij � fV, f ′v = (
∑
j∈{i}

αij � tV)− t/10 Å (38)

where fs ∈ RNnodes×c, fv ∈ RNnodes×3×c, e ∈ RNedges×c, t ∈ RNnodes×3. Note that the expression for computing
attention weights z is directly adapted from IPA.

f ′s, f
′
v = LocalUpdateUsingChannelWiseGating(fs, fv) where (39)

f ′s, fgate = MLP(fs ⊕ ‖fv‖2) (40)

f ′v = (fv ·Wv)� fgate (41)

As only linear layers and vector scaling operations are used to update the vector representations fv,
LocalUpdateUsingChannelWiseGating is E(3)-equivariant.

f ′s, f
′
v = LocalUpdateUsingReferenceRotation(fs, fv,R ∈ SO(3)) where (42)

f ′s, fvloc = MLP(fs ⊕RT · fv ⊕ ‖fv‖2) (43)

f ′v = R · fvloc (44)
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Since the third row of R is a pseudovector as described in rigidFrom3Points, the determinant of the rotation matrix
R is unchanged under parity inversion transformations i : x 7→ −x and thus the intermediate quantity fvloc is SE(3)-
invariant but in general not invariant under parity inversion i. This property ensures that ESDM can learn the correct
chiral symmetry breaking behaviors in molecular 3D conformation distributions.

∆t = PredictDrift(fs, fv) where (45)
oscale = Softplus(MLP(fs)) (46)

∆t = (fv ·Wdrift)� oscale. (47)

The predicted drift vectors ∆t are added to the input node coordinates; the final coordinate outputs are taken as the
predicted denoised observations x̂(0), ŷ(0).

A.7 Model training and hyperparameters

The loss function for NeuralPLexer training is:

Ltraining = Et∼(0,1]

[
Lcontact(t) + Lgp−mean(t) + LDSM−prot(t) + LDSM−ligand(t) + LDSM−site(t)

]
(48)

We train the contact predictor ψ to match the posterior distribution defined by the observed contact map qL ..=
Categoricalnres×m(L) where L ..=

⊕
k Lk with intermediate ligand-wise one-hot matrices lk sampled from qLk :

Lcontact(t) = KL(qL‖qψ(·|0, s, x̃(t),G)) +

K∑
k=1

Elk∼qLk

[
JS(qLk‖qψ,k(·|

k∑
r=1

lr, s, x̃(t),G))
]

(49)

where KL denotes a Kullback–Leibler divergence and JS denotes a Jensen–Shannon divergence. An auxiliary loss is
added to the mean term in the predicted geometry prior:

Lgp−mean(t) = Elk∼qLk

[
‖cT
ψ,k(

k∑
r=1

lr, s, x̃(t),G) · x̃(t)− c · x̃(t)‖
]

(50)

The denoising score matching (DSM) loss expressions are given by

LDSM−prot = Ex(t),y(t)∼q0:t(·|x(0),y(0))

[ 1

n

∑
i

‖xi(0)− x̂i(0)‖2/σ(t)
]

(51)

LDSM−site is defined analogously but averaged for residues that are within 6.0 Å of the ligand in the ground-truth
structure. Lastly

LDSM−ligand = Ex(t),y(t)∼q0:t(·|x(0),y(0))

[ 1

m

∑
i

‖yi(0)− ŷi(0)‖2/σ(t)
]
. (52)

For the ligand graph encoder, we use 6 PiFormer blocks with a embedding dimension of 512 for atom representation
and frame representations, and a dimension of 128 for pair representations. For the protein encoder, we use 4 GraphIPA
blocks with a node embedding dimension of 256 and edge embedding dimension of 64. For the contact predictor we
use 4 blocks with the same embeddings sizes (256, 64) as in the protein encoder; linear layers are added to project
the ligand representations to the length of protein representations before they are passed to the contact predictor. For
ESDM, we use a stack of 4 blocks with a embedding dimension of 64 for both node and edge representations, that is,
each node i is associated with scalar representations fs,i of size 64 and vector representations fv,i of size [3, 64].

The pretrained small-molecule encoder weights are frozen during training. Model is trained with batch size of 8 for 40
epochs, using dropout=0.05, an inital learning rate of 3E-4 with 1000 warmup steps followed by a cosine annealing
learning rate decay schedule. On the PDBBind 2020 training set (170k samples), the training run took 20 hours a single
NVIDIA-Tesla-V100-SXM2-32GB GPU.

A.7.1 Task-specific fine-tuning

The model used for fixed-backbone protein-ligand docking is fine-tuned on the original PDBBind training dataset, while
all backbone atoms (N,Cα,C,O) and Cβ atoms are set to the ground-truth coordinates. Fine-tuning is performed for 20
epochs with a batch size of 8 without teacher forcing for the geometry prior (i.e., sampling the one-hot matrix l from the
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observed contact map qL = Categoricalnres×m(L), using the predicted contact map ψ(l, s, x̃,G) to parameterize the
finite-time transition kernels qt(Z(t)|Z(0)) during model forward pass, and then backpropagating the model end-to-end)
using a cosine annealing schedule with a initial learning rate of 1E − 4.

The model used for binding-site inpainting is fine-tuned on all split-chain samples from the original PDBBind training
dataset. A protein-chain/ligand pair is included in the fine-tuning dataset if any heavy atom of the ligand is within
10 Å of any heavy atom of the protein chain. All receptor residues that are not within 6.0 Å of the ligand are set to the
ground-truth coordinates with the residue-wise and protein-atom-wise time-step encoding set to zeros. Fine-tuning is
performed for 40 epochs with a batch size of 10 without teacher forcing for the geometry prior using a cosine annealing
schedule with a initial learning rate of 1E − 4.

A.8 Computational details

A.8.1 Test datasets and post-processing

While the time-split-based PDBBind 2020 dataset has been used in previous works for studying model generalization to
novel protein-ligand pairs, we noticed that the 363-sample test set curated by [43] contains samples with improperly
removed alternative ligand conformation ground truths or deleted adjacent chains that strongly interact with the ligand
molecule in the full structure (e.g., binding sites near protein-protein interfaces). To ensure a reasonable comparison to
docking-based methods, for the test dataset used fixed-backbone ligand conformation prediction experiments we keep
all protein chains that are within 10 Å of the ligand from the original PDB file instead of using the receptor PDB files
curated by PDBBind; we further removed all covalent ligands and pipetide binders from the test set as such cases are
usually tackled by specialized algorithms [64, 65], resulting in 275 test samples in total to produce the results presented
in Figure 2a-d.

The AlphaFold2 structures used in the ligand-coupled binding site repacking task are predicted using ColabFold [66]
with default MSA, recycling, and AMBER relaxation settings, and without using templates in order to best reflect
the prediction fidelity of AlphaFold2 on novel targets (since all PDBBind test set samples are deposited before year
2021). The input sequences for all protein chains are obtained from https://www.ebi.ac.uk/pdbe/api/pdb/
entry/molecules/ to avoid issues related to unresolved residues and to represent a realistic testing scenario where
the protein backbone models are obtained from the full sequence.

A.8.2 Baseline method configurations

We run CB-Dock [44] with a heuristic low-sampling-intensity configuration (exhaustiveness=1, number of clustered
binding sites to start local docking = 1) such that the execution time (43 seconds per ligand on average on single
core of an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz CPU) is comparable to deep-learning-based methods that
were proposed to perform docking at a low computing budget. The top-scored ligand conformations collected for
each protein-ligand pair as ranked by Autodock Vina [67] are used to obtain the success rate results in Figure 2a.
EquiBind [43] are launched with the default configuration file, and for each protein-ligand pair 64 ligand conformations
are generated using different random RDKit [68] input conformers. We note that the incorporation of side-chain
flexibility as provided by AutoDock Vina and the systematic tuning of sampling intensity in docking-based methods
may offer a more accurate comparision regarding the accuracy/computational time relationship among physics-based
and learning-based methods.

RosettaLigand [23] runs are launched with a configuration modified from the standard protocol. We set the receptor
Calpha constraint parameter to 100.0 to enable a fully flexible receptor; the ligand coordinates are initialized using the
aligned-ground-truth conformation as obtained by TM-Align [49], with randomized torsion angles using the BCL [69]
library as described in the standard protocol. We set the docking box width to 4.0 Å and remove the ligand center
perturbation step to ensure the ligand search space during the low-resolution docking stage is constrained to the binding
site location. While high-fideltiy physics-based methods such as IFD-MD [18] have been proposed for flexible-receptor
ligand docking, such algorithms often incurs orders-of-magnitude higher computational cost thus are not included
within the scope of this study.

A.9 Evaluation metric details

All protein structure alignments and TM-Score calculations are performed using TMAlign [49]. All reported TM-Scores
are normalized by the chain length of the reference PDB structure. The per-residue all-atom lDDT score is computed
using OpenStructure [70]; the lDDT-BS score is then computed by averaging the per-residue scores for ligand binding
site residues with a cutoff of 4.0 Å as used in CAMEO [48]. The symmetry-corrected heavy-atom RMSD for ligand
structure comparison is computed using the obrms function in OpenBabel [71]. A standard 6-12 Lennard-Jones
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energy functional form is used for computing the clash rate statistics; the L-J energy and VdW radius parameters
are obtained from the UFF parameter file retrieved from https://github.com/kbsezginel/lammps-data-file/
blob/master/uff-parameters.csv.
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