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Abstract

Protein-nucleic acid complexes play critical roles in biology.  Despite considerable recent

advances in protein structure prediction, the prediction of the structures of protein-nucleic acid

complexes without homology to known complexes is a largely unsolved problem.  Here we

extend the RoseTTAFold end-to-end deep learning approach to modeling of nucleic acid and

protein-nucleic acid complexes.  We develop a single trained network, RoseTTAFoldNA, that

rapidly produces 3D structure models with confidence estimates  for protein-DNA and

protein-RNA complexes, and for RNA tertiary structures.  In all three cases, confident

predictions have considerably higher accuracy than current state of the art methods.

RoseTTAFoldNA should be broadly useful for modeling the structure of naturally occurring

protein-nucleic acid complexes, and for designing sequence specific RNA and DNA binding

proteins.

Main Text

Current approaches to protein-nucleic acid complex structure prediction involve building

models of the protein and nucleic acid components separately and then building up complexes

using computational docking calculations [1–3]. RNA structure prediction has generally

proceeded by first predicting the secondary structure (Watson/Crick base pairing) and then

assembling the secondary structure into a tertiary structure [4–7]. More recently, deep learning

methods have been used for contact prediction to aid in RNA structure determination [8], and

to select  models from ensembles generated using other structure sampling approaches [9].

Despite this progress, the prediction of the structure of nucleic acids and protein-nucleic acid

complexes has lagged considerably behind the prediction of protein structures from their amino

acid sequences, which has been transformed by the high accuracy AlphaFold and RoseTTAFold

methods.
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AlphaFold and RoseTTAFold take as input one or more aligned protein sequences, and

successively transform this information in parallel 1D, 2D and – in the case of RoseTTAFold –  3D

tracks, ultimately outputting three dimensional protein structures.  The 10s to 100s of millions

of free parameters in these deep networks are learned by training on large sets of proteins of

known structures from the PDB. Both AlphaFold2 and RoseTTAFold can generate accurate

models of not only protein monomers but also protein complexes, modeling folding and binding

by successive transformations over hundreds of iterations.  Given the overall similarities

between protein folding and RNA folding, and between protein-protein binding and

protein-nucleic acid binding, we reasoned that the concepts and techniques underlying

AlphaFold [10] and RoseTTAFold [11] could be extended to prediction of the structures of

nucleic acids and protein-nucleic acid complexes from sequence information alone. We set out

to generalize RoseTTAFold to model nucleic acids in addition to proteins, and to learn the many

new parameters required for general protein-nucleic acid systems by training on the structures

in the PDB. A major question at the outset was whether there were sufficient nucleic acid and

protein-nucleic acid structures in the PDB to train an accurate and general model; key to the

success of AlphaFold are the hundreds of thousands of protein structures in the PDB, but there

are an order of magnitude fewer nucleic acid structures and complexes.

The architecture of RoseTTAFoldNA is illustrated in Figure 1. It is based on the three-track

architecture of RoseTTAFold [11], which simultaneously refine three representations of a

biomolecular system: sequence (1D), residue-pair distances (2D), and cartesian coordinates

(3D). In addition to several modifications to improve performance [preprint], we extended all

three tracks of the network to support nucleic acids in addition to proteins.  The 1D track in

RoseTTAFold has 22 tokens, corresponding to the 20 amino acids, a 21st “unknown” amino acid

or gap token, and a 22nd mask token that enables protein design; to these, we added 10

additional tokens, corresponding to the 4 DNA nucleotides, the 4 RNA nucleotides, unknown

DNA, and unknown RNA. The 2D track in RoseTTAFold builds up a representation of the

interactions between all pairs of amino acids in a protein or protein assembly; we generalized

the 2D track to model interactions between nucleic acid bases and between bases and amino

acids.  The 3D track in RoseTTAFold represents the position and orientation of each amino acid

in a frame defined by three backbone atoms (N, CA, C), and up to four chi angles to build up the

sidechain. For RoseTTAFoldNA, we extended this to include  representations of each nucleotide

using a coordinate frame describing the position and orientation of the phosphate group,  and

10 torsion angles which enable building up of all the atoms in the nucleotide. RoseTTAFoldNA

consists of 36 of these three-track layers, followed by four additional structure refinement

layers, with a total of 67 million parameters.
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We trained this end-to-end protein/NA structure prediction network using a combination of

protein monomers, protein complexes, RNA monomers, RNA dimers, protein-RNA complexes,

and protein-DNA complexes, with a 60/40 ratio of protein-only and NA-containing structures

(see Supplemental Methods).  Multichain assemblies other than the DNA double helix were

broken into pairs of interacting chains.  For each input structure or complex, sequence similarity

searches were used to generate multiple sequence alignments (MSAs) of related protein and

nucleic acid molecules. Network parameters were optimized by minimization of a loss function

consisting of a generalization of the all atom FAPE loss [10] defined over all protein and nucleic

acid atoms  (see methods)  together with additional contributions assessing recovery of masked

sequence segments,  residue-residue (both amino acids and nucleotides) interaction geometry,

and error prediction accuracy.  To try to compensate for the far smaller number of  nucleic acid

containing  structures  in the PDB (following sequence similarity based cluster to reduce

redundancy, there are 1632 RNA clusters and 1556 protein-nucleic acid complex clusters

compared to 26128 all protein clusters) , we also  incorporated physical information in the form

of Lennard-Jones and hydrogen-bonding energies [12] as input features to the final refinement

layers, and as part of the loss function during fine-tuning.   During training,  10% of the clusters

were withheld  for model validation.

We trained the model using structures determined prior to May 2020, and used  RNA  and

protein/NA structures solved since then as an additional independent validation set.  For the

validation set, complexes were not broken into interacting pairs and were processed entirely as

full complexes.  Paired MSAs were generated for complexes with multiple protein chains as

described previously [13].   Due to GPU memory limitations, we excluded complexes with more

than 1000 total amino acids and nucleotides, which resulted in 41 cases with a single RNA chain,

88 complexes with one protein molecule plus a single RNA chain (21) or DNA duplex (67), and

108 cases with more than one protein chain or more than a single RNA chain or DNA duplex.

The results of RoseTTAFoldNA at predicting RNA structures are summarized in Figure 2.  Several

observations are immediately apparent from these results.  Most predictions are reasonably

accurate: the average lDDT is 0.73, with 38% of models predicted with lDDT>0.8 (Figure 2A).

RoseTTAFoldNA, like RoseTTAFold and AlphaFold, outputs not only a predicted structure but

also a predicted model confidence, and as expected more confidently predicted models have

higher accuracy: 42% of cases are predicted with very high confidence (plDDT > 0.9), for which

the average lDDT is 0.84 and 72% of models have lDDT > 0.8 (and 96% lDDT > 0.7). Even for

cases with no homologs of known structure or small numbers of sequence relatives (shallow

MSAs), confidently predicted models are generally quite accurate  (colorbar, Figure 2B,C).  There

were 78 cases with no detectable sequence similarity (>0.001 blastn E-value) to any structure in

the training set, which have an average all-atom lDDT of 0.67, and 21% of models with
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lDDT>0.8. Within this set, 28% of cases are predicted with high confidence, with an average

lDDT of 0.79 and 48% with lDDT > 0.8 (and 90% lDDT > 0.7). Four examples of high accuracy

structure predictions in the absence of sequence homology to previously solved structures are

shown in Figs 2D-G: these  include a heavily modified bacterial ribosomal RNA, domain 2 of an

NAD+ riboswitch, a lysine riboswitch, and the SARS-CoV-2 frameshifting pseudoknot, shown in

Figures 2D-G. Inaccuracies in these predictions are in the curvature of larger models (Figures

2F,G) or near the binding site for the unmodeled ligand (Figures 2E), but the overall secondary

structures and folds are correct.

RoseTTAFoldNA results on 259 monomeric protein/NA complexes are summarized in Figure 3.

As with the RNA cases, the predictions are reasonably accurate, with an average lDDT of 0.73

and 24% of models with lDDT>0.8 (Figure 3A), and about 56% of models identify greater than

half of the native contacts between protein and NA (f_nat > 0.5, Figure 3C).  As in the RNA case,

and importantly for applications, the method correctly identifies which structure models are

accurate. Although only 27% of the complexes are predicted with high confidence (mean

interface PAE < 10), of those, 82% correctly model the protein/NA interface (“acceptable” or

better by CAPRI metrics [14]). Over the 63 cases with no detectable sequence similarity to

training protein/NA structures, the accuracy is somewhat lower on average (average lDDT=0.66

with 8% of models >0.8 lDDT and 31%  with f_nat > 0.5), but the model is still able to correctly

identify accurate predictions—all three of the high confidence predictions in this subset have

acceptable interfaces according to CAPRI metrics.  Four predictions of structures with no

homology are shown in Figures 3D-G. These include a monomeric mutant of the transcriptional

repressor BEND3, the endonuclease EndQ, the hMettl16 catalytic domain bound to an RNA

hairpin, and Rmd9 bound to ssRNA. Inaccuracies in these predictions can be found in flexible

linker regions (Figure 3D), distortions of the DNA double helix and a 1-base pair shift along the

DNA (Figure 3E), translations of the interface (Figure 3F), and positions of flexible ssRNA termini

(Figure 3G), but the overall complex architecture is clearly correctly recapitulated.

Figure 5 summarizes the performance of RoseTTAFoldNA on 108 multi-subunit protein/NA

complexes, most of which are either homodimers (66) or heterodimers (12) bound to nucleic

acids.  Performance is similar to that for monomeric protein/nucleic acid complexes, with an

average lDDT=0.73 with 18% of cases >0.8 lDDT, and good agreement between confidence and

accuracy (Figure 5A). Two examples are illustrated in Figure 5 (B,C), showing the ability of the

model to predict complex structure as well as the “bending” of DNA induced by protein binding.

Such bending would not be possible to predict by approaches that first generate models of the

independent components and then rigidly dock them.
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Discussion

At the outset of this work, it was not clear that there were enough protein-nucleic acid

structures in the PDB to enable robust training of a predictor with atomic accuracy – the training

data used for nucleic acid prediction is only one tenth the size of the dataset used for protein

structure prediction.  Our results show, however, that this data is sufficient in many cases for de

novo structure modeling, with RNA prediction accuracy nearly as good as protein structure

prediction accuracy, and accurate modeling of protein/NA interfaces without shared MSA

information or homologues of known structure in about 31% of cases.   Prospective and blind

tests will be important for further critical evaluation of the method.

Comparisons to the current state of the art methods are more difficult than was the case for the

deep learning methods AlphaFold2 and RoseTTAFold which focused on the much more well

studied protein structure prediction problem.  There has been recent work on RNA structure

prediction–over similar types of targets our method is much better than traditional methods

and slightly better than other machine learning methods. Over the 78 RNA structures with no

homologs in our training data, FARFAR2’s top-ranked models have an average lDDT of 0.47 [4],

while DeepFoldRNA has an average lDDT of 0.61 [15], compared to 0.67 for RoseTTAFoldNA and

0.79 for RoseTTAFoldNA high-confidence predictions (Suppl. Fig S1;  some of these examples

may have been in the DeepFoldRNA training set).  For protein-nucleic acid complexes,

comparisons are even more difficult; indeed we are aware of no previous methods that predict

the structures of such assemblies from sequence information alone, and there are not well

established protocols for docking predicted protein and nucleic acid structures.  Hence, while

the accuracy of RoseTTAFoldNA on RNA structures and protein-nucleic acid complexes is

considerably lower than that of AlphaFold2 on protein structures, it represents a very significant

improvement in the state of the art.

Further increases in accuracy could come from a larger, more expressive network; we used a

similar-sized network to that of RoseTTAFold2, with ~67M parameters and 36 total layers and

there are more interactions to learn with the addition of nucleic acids. Use of high-confidence

predicted structures as additional training examples (made more difficult by subsampling MSAs)

should further increase model accuracy [10];  for this purpose there are databases of structured

RNAs [15,16] and DNA binding profiles for thousands of proteins [17,18], and the latter should

be useful for training a model fine-tuned for DNA specificity as well.  Deep-learning guided

structure prediction of proteins opened up new avenues of research; we hope that this work

does the same for protein/NA interactions and complexes.  To this end, we have made the

method freely available at https://github.com/uw-ipd/RoseTTAFold2NA.
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Supplemental Methods

Training and validation data processing. The protein and protein complex data used in training

was identical to that used in training RoseTTAFold2.  Additional data from RNA and

protein/nucleic acid complexes was added to this.  To construct this dataset, all PDBs solved by

NMR, crystallography, or cryoEM at better than 4.5Å resolution were collected.  A dataset was

constructed considering all PDB structures published at or before April 30, 2020, and collecting:

·  All RNA single chains and all RNA duplexes.  A duplex was defined by looking for pairs

of RNA chains making at least 10 hydrogen bonds.

·  All interacting protein/nucleic acid pairs.  Interacting pairs were defined by counting

the number of 7Å contacts between protein Cαs and any (non-hydrogen) nucleic acid

atom; if there were more than 16 such contacts, the pair was considered interacting.

Nucleic acid duplexes were included if the DNA or RNA chains made at least 10 hydrogen

bonds.

For modeling, the full-length sequence was used.  All nonstandard bases/amino acids were

converted into a backbone-only “unknown” residue type.  The dataset size was 7396 RNA chains

and 23583 complexes.  These were then clustered using a 1e-3 hhblits [19] E-value for proteins

and 80% sequence identity for RNA molecules, yielding 1632 nonredundant RNA clusters and

1556 nonredundant protein/NA clusters.  These clusters were then split into training and

validation sets, with clusters chosen for the training set; an example which contained any

member (NA or protein) of a validation set cluster was assigned to the validation set.  This led to

199 protein/NA clusters and 116 RNA clusters in the validation set.

Multiple sequence alignments (MSAs) were then created for all protein and RNA sequences in

the training and validation set.  Protein MSAs were generated in the same way as RoseTTAFold

[preprint], using hhblits at successive E-value cutoffs (1e-30, 1e-10, 1e-6, 1e-3), stopping when

the MSA contains more than 10000 unique sequences with >50% coverage.  RNA MSAs were

generated using a pared-down version of rMSA (https://github.com/pylelab/rMSA) that

removes secondary structure predictions: sequences were searched using blastn [20] over 3

databases (RNAcentral [15], rfam [16], and nt) to first identify hits, then using nhmmer [21] to

rerank hits.  We again use successive E-value cutoffs (1e-8, 1e-7, 1e-6, 1e-3, 1e-2, 1e-1),

stopping when the MSA contains more than 10000 unique sequences with >50% coverage.

Test set data processing. For an independent test set, we took all structures published to the

PDB May 1, 2020 or later.  Selection criteria and preprocessing was the same as for the training

and validation data with two exceptions: a) only complexes fewer than 1000 residues plus
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nucleotides in length were considered; and b) for complexes containing more than one unique

protein chains, paired MSAs were created by merging sequences from the same organism into a

single combined sequence (following prior work [13]). This gave us 93 complexes with one

protein molecule plus a single RNA chain or DNA duplex, 41 cases with a single RNA chain, and

132 cases with more than one protein chain or more than a single RNA chain or DNA duplex.

Loss functions. The model was trained using a loss function similar to RoseTTAFold, where we

take the weighted sum:

𝑙𝑜𝑠𝑠 = 𝑤
𝑠𝑒𝑞

· 𝑠𝑒𝑞 + 𝑤
6𝐷

· 6𝐷 + 𝑤
𝑠𝑡𝑟

· 𝑠𝑡𝑟 + 𝑤
𝑡𝑜𝑟𝑠

· 𝑡𝑜𝑟𝑠 + 𝑤
𝑒𝑟𝑟

· 𝑒𝑟𝑟

Above, seq is the masked amino-acid recovery loss (no masking is applied to nucleotide

sequences); 6D is the 6-dimensional “distogram” loss [ref - trRosetta]; str is the structure loss,

consisting of the average backbone FAPE loss [10] over all 40 structure layers of the network

plus the allatom FAPE loss for the final model; tors is the torsion prediction loss averaged over

the 40 structure layers; and err is the loss in pLDDT prediction.

FAPE loss is extended to nucleic acids in a straightforward manner from how it is implemented

for amino acids.  For backbone FAPE loss, the phosphate group in the nucleic acid backbone is

treated as the nucleotides “frame,” in the same way that N-Cα-C is used as an amino acid frame.

For nucleic acid allatom FAPE loss, three-atom frames are constructed corresponding to each of

the 10 “rotatable torsions” (see below for the definition), where the frame consists of the two

bonded atoms defining the torsion plus an additional bonded atom, closer to the phosphate

group in the bond graph.  The cross product of these 10 frames with all atoms is used to

calculate FAPE loss.

Following training with the above loss function, an additional “finetuning” phase is carried out,

where additional energy terms are added to the loss function enforcing reasonable model

geometry:

𝑙𝑜𝑠𝑠
𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒

= 𝑙𝑜𝑠𝑠 + 𝑤
𝐿𝐽
· 𝐿𝐽 + 𝑤

ℎ𝑏𝑜𝑛𝑑
· ℎ𝑏𝑜𝑛𝑑 + 𝑤

𝑔𝑒𝑜𝑚
· 𝑔𝑒𝑜𝑚 + 𝑤

𝑝𝑎𝑖𝑟𝑒𝑟𝑟
· 𝑝𝑎𝑖𝑟𝑒𝑟𝑟

Above, LJ and hbond are the Lennard-Jones and hydrogen bond energies of the final structure

(normalized by the number of atoms), using a reimplementation of the corresponding Rosetta

energy terms [12]; geom is a term that enforces ideal bond lengths and bond angles around the

peptide or phosphodiester bond connecting residues/nucleotides; and pairerr is a predicted

residue-pair error [10].  The functional form of the geom term is identical to that of

RoseTTAFold2, a linear penalty with a “flat bottom” plus or minus 3 degrees/0.02 Å from the

ideal values.
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Model training. The network was trained in two stages, an initial training period, and a

fine-tuning period.  In both, input structures were divided into 5 pools: a) protein structures, b)

“distilled” protein structures (consisting of high-confidence AlphaFold2 predictions), c) protein

complexes, d) protein/NA complexes, and e) RNA structures.  Training sampled from each of

these pools with equal probability (though later in training protein/NA frequency was increased

to 25% and RNA frequency lowered to 15%).  For both pools containing “complexes,” an equal

number of positive and negative examples were used in training.  Negative examples consist of

non-binding proteins or protein/NA pairs; the structure loss only penalizes each component

individually, and the 6D loss favors placing negative binding examples far apart.

Examples larger than 256 residues/nucleotides in length were “cropped” to 256 residues in

length.  For protein-only data these crops were continuous sequences; for nucleic acids and

nucleic-acid/protein complexes the cropping was a bit more complex.  A graph was constructed

where sequential residues/nucleotides had edges with weight 1, Watson/Crick base-paired

nucleotides had weight 0, and protein/NA bases closer than 12Å (Cα to P) had a weight of 0.  In

negative cases, a single random protein/NA edge was given weight 0.  Then minimum-weight

graph traversal starting from a randomly chosen protein/NA edge was used to crop the model

down to 256 residues/nucleotides.  For RNA-only models the same strategy was used, though

the starting point was a random nucleotide.

Training was carried out in parallel on 64 GPUs.  A batch size of 64 was used throughout training

with a learning rate of 0.001, decaying every 5000 steps.  The following weights were used:

wseq=3.0, w6d=1.0, wstr=10.0, wtors=10.0, werr=0.1. The Adam optimizer was used, with L2

regularization (coeff=0.01).

Following ~1e5 optimization steps, fine-tuning training was carried out.  Here we increase crop

size to 384 and effective batch size to 128, and reduce learning rate to 5e-4.  We used additional

loss terms with weights wgeom=0.1, wLJ=0.02, whbond=0.05, and wpairerr=0.1, and optimized for an

additional 30000 minimization steps.  All told, training took approximately 4 weeks.
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Figure 1.  Overview of the architecture of RoseTTAFoldNA. The three-track architecture of

RoseTTAFoldNA simultaneously updates sequence (1D), residue-pair (2D) and structural (3D)

representations of protein/nucleic acid complexes.  The areas in red highlight key changes

necessary for the incorporation of nucleic acids: inputs to the 1D track include additional NA

tokens, inputs to the 2D track represent template protein/NA and NA/NA distances (and

orientations), and inputs to the 3D track represent template or recycled NA coordinates.  Finally,

the 3D track as well as the structure refinement module (upper right) can build all-atom nucleic

acid models from a coordinate frame (representing the phosphate group) and a set of 10 torsion

angles (6 backbone, 3 ribose ring, and 1 nucleoside).
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Figure 2. RNA structure prediction. (A-C) Summary of results on 117 RNA structures from the

validation set and 41 RNA-only structures released since May 2020. (A) Model accuracy

increases at higher confidence levels. The overall average lDDT is 0.73, and the average lDDT for

very high confidence predictions (plDDT > 0.9) is 0.84.  (B) Although models are generally more

accurate for structures with close homologues in the training set, many structures with no

detectable homologues in the training set are also predicted accurately. (C) Accuracy improves

as the number of sequences in the MSA increases, but many single-sequence examples are

accurately predicted.  (D-F) Four example predictions of RNA models with no detectable

sequence homologs in the training set, three of which also have no detectable structural

homology according to PDB structure similarity search. (D) a heavily modified bacterial

ribosomal RNA (PDB id: 2a04) [], (E) domain 2 of an NAD+ riboswitch ( PDB id: 7d81) [], (F) a

lysine riboswitch (PDB id: 3d0u) [], and (G) a SARS-CoV-2 frameshifting pseudoknot RNA (PDB id:

7lyj) [].
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Figure 3.  Protein - nucleic acid structure prediction (A-C) Summary of results on 171

Protein/NA structures from the validation set and 88 Protein/NA structures released since May

2020. (A) Scatterplot of prediction accuracy (true lDDT to native structure) vs prediction

confidence (lDDT predicted by the model) shows that the model correctly identifies inaccurate

predictions. (B) Although accuracy is higher for models with close homologs, many models

without any homologs are still predicted accurately. (C) Scatterplot of native interface contacts

recapitulated in the prediction (f_nat) versus sequence similarity to training data. 31% of

predictions are ranked “acceptable” or better by CAPRI metrics, and 82% of those with high

confidence (mean interface PAE < 10). (D-G) Four examples of Protein/NA complexes without

homologues:  the transcriptional repressor BEND3 (panel D, pdb ID: 7v9i) []; the endonuclease

EndQ (panel E, PDB id: 7k33) []; the hMettl16 catalytic domain bound to a 3’ UTR hairpin RNA

(panel F, PDB id: 3du5); and Rmd9 – a protein that binds 3’ UTRs – bound to mRNA (panel G,

PDB id: 7a9x).
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Figure 4.  Modelling multichain protein-nucleic acid complexes. (A) Scatterplot of predicted

model accuracy versus actual model accuracy for 108 protein/NA complexes with multiple

protein chains or multiple nucleic acid chains/duplexes correctly estimates model error.  (B-C)

Examples of successful predictions without homologues in the training set. These include the

dimeric bacterial transcription regulator DeoR (panel B, PDB id: 7bhy) []; and a dimeric complex

from the BREX phage restriction system (panel C, PDB id: 7t8k) [].
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Supplemental Figure S1. Comparing RoseTTAFoldNA to other methods. (A) Scatterplot of

predicted accuracy for RoseTTAFoldNA vs DeepFoldRNA, a recent machine learning method for

RNA structure prediction [15] shows comparable performance. RoseTTAFoldNA slightly

outperforms DeepFoldRNA, with average lDDTs of 0.67 and 0.61 respectively. (B) The gap in

performance is much larger if only RoseTTAFold’s high-confidence predictions (plDDT > 0.9?) are

considered, which have an average lDDT of 0.79.   (C) Scatterplot comparing RoseTTAFoldNA to

FARFAR2, a Rosetta-based fragment assembly method for RNA structure prediction [4].

RoseTTAFoldNA consistently and dramatically outperforms FARFAR2’s top-ranked models, which

have an average lDDT of 0.47. (D) The performance gap is even larger when only considering

RoseTTAFoldNA confident predictions.
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