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ABSTRACT  

Plant pathogenic fungi secrete small proteins known as effectors which help overcome 

the plant defense response and cause disease. The concept of effector-triggered 

immunity in plants evolved from the “gene for gene hypothesis” which describes plant 

resistance or susceptibility to plant pathogens based on interspecies protein-protein 

interactions (PPIs) between plant-derived resistance (R) genes and pathogen-derived 

avirulence (Avr) effector genes. Understanding the molecular interactions mediating 

these host-pathogen interactions in effector-triggered immunity is thus essential to 

managing fungal disease. In silico methods of predicting interspecies PPIs have been 

heavily studied to identify target genes for crop resistance. But conventional sequence-

based homology methods (i.e., interlog, domain-based inference) for predicting 

interspecies PPIs are not as powerful as methods that also incorporate structural 

homology. The objective of this study was to develop a computational workflow to 

predict PPIs between pathogenic fungi and their cereal hosts by leveraging recent 

advances in artificial intelligence and structural biology. This workflow proposes the use 

of a generative model, RFdiffusion, to predict the structure of truncated segments of 

proteins likely to bind to query effector proteins. The binder structures were filtered 

based on the number of contacts at the effectors’ known binding residues. Acceptable 
structures were then input into FoldSeek to search the host proteome for host proteins 
containing similar sub-structures. Experimentally-validated PPIs between rice (Oryzae 
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sativa cv. ‘Japonica’) and rice blast fungus (Magnaporthe oryzae) were used for 

workflow validation. The effects of binder length and the binding residues’ mode of 

action (i.e., residues at active/substrate recognition sites) on the binder quality and 

presumptive host protein matches were explored. Ultimately, 11 out of 14 

experimentally validated PPIs were recovered computationally, indicating a high recall 

(>78%) for the workflow. The shorter binders recovered most of the PPIs, but may have 

produced the most false positives, as functional analyses revealed that these host 

proteins displayed a wide variety of functions. These findings emphasize that subject 

matter expertise is still required to decipher the prediction results. Yet, this framework 

for elucidating interactions between fungal pathogens and host proteins could provide 

valuable insight into mechanisms of susceptibility or resistance at a scale friendly to 

limited computational resources, and facilitate the development of control strategies that 

reduce crop diseases. 

 

INTRODUCTION 

Fungal plant pathogens are a major cause of widespread agricultural losses, particularly 

in economically important cereal crops like rice, wheat and maize (Liu et al., 2022). 

Beyond agricultural and economic losses, some of these pathogens pose serious food 

safety concerns because they can produce mycotoxins and mycotoxin derivatives in 

grains that are harmful to human and animal health when consumed (Zhang et al., 

2020). With climate change creating more favorable conditions for fungal growth, the 

niche of mycotoxigenic species is likely to expand (Chhaya et al., 2022). Therefore, 

continued research and development of technologies that predict and detect potential 

threats from emerging fungal pathogens is critical for developing control strategies and 

mitigating crop loss caused by fungal disease. 

Fortunately, there have been long-standing scientific efforts and strides made towards 

developing such technologies, especially through studying protein function. In the plant 

immune response, proteins play a critical role in pathogen perception, cell signaling 

cascades, and oxidative bursts (Nishad et al., 2020). Fungal proteins called effectors, 

are secreted by pathogens to manipulate host cell processes, facilitate host 

colonization, evade host defenses, and to produce mycotoxins (Liu et al., 2022). 

Effector-triggered immunity evolved from the “gene for gene hypothesis” which 

describes the interaction between plant-derived resistance (R) genes and pathogen 

derived avirulence (Avr) effector genes (Kumar et. al., 2022). The critical role of proteins 

in the plant immune response and fungal infection has led to their use as biomarkers for 

developing pesticides (Gressel, 2022), biosensors and immunoassays (Oliveira et al., 

2019), designer plant proteins (Césari et al., 2022; Godana et al., 2023) and targeted 

crop breeding (Dracatos et al., 2023).   
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Understanding how fungal proteins affect plant metabolism is essential for maximizing 

the efficacy of protein-based and chemical agricultural innovations. Many of these 

proteins affect metabolism through intra- and interspecies protein-protein interactions 

(PPIs)(Liu et al., 2022). Thus, predicting this cross-talk has been a prime target for 

machine learning (Kaundal et al., 2022; Khairi et al., 2023; Lei et al., 2023; Yang et al., 

2019; Zheng et al., 2021). Intraspecies PPI networks have been developed in silico for a 

variety of cereal crops (Ma et al., 2019; Musungu et al., 2015) and plant pathogens 

(Guo et al., 2013; Zhang et al., 2017), which have improved our understanding of fungal 

effectors (Yang et al., 2019) and reduced the time and cost needed to identify candidate 

genes for plant pathogen resistance (Zheng et al., 2021). However, predicting 

interspecies PPIs between crop plants and fungal pathogens can be a much more 

arduous task, and falls far behind that in mammals and/or human research for various 

reasons. 

Data availability is a major obstacle at the front-end of interspecies PPI data analyses. 

Most PPI databases (i.e., STRINGdb, MINT, IntAct) predominantly contain interactions 

from human or model animal systems (i.e., rat, Drosophila), and their pathogens of 

interest (Yang et al., 2019). Of the interspecies PPI data readily available in plants, the 

majority is from the model organism Arabidopsis thaliana (Yang et al., 2019). The 

number of experimentally resolved plant protein structures is also very low, with proteins 

from Viridiplantae (‘green plants’; Taxon ID: 33090) accounting for less than four 

percent of all available experimental structures in the Protein Data Bank (PDB) (Burley 

et al., 2023). In the past, sequence similarity-based methods such as interlog and 

domain-based inference were primarily used to infer PPIs by transferring assigned 

protein function from well-studied model organisms to the study’s target organism (Yang 

et. al, 2019). But using sequence similarity may only be effective for sequences that 

share a high degree of similarity (Mika & Rost, 2006). In fungi, recent work highlights 

several classes of effectors (i.e., MAX effectors, ToxA-like family) whose members 

share high structural similarity and phenotypic outcomes, but low sequence similarity 

(Jones et al., 2021). Once more, a study on the evolutionary dynamics of resistance (R) 

genes in plants show that the sequence-based homologs of R-genes, such as the 

paired R-genes Pik1/Pik2, may actually encode pseudogenes (Mizuno et al., 2020). 

Such findings may explain why the rice reference genome (cultivar Nipponbare) is not 

resistant to rice blast fungus despite having the Pik1/Pik2 homologs Pik5-NP/Pik6-NP. 

However, there are also obstacles to using structural similarity or biochemistry alone for 

predicting interspecies PPIs. Even effectors with a high degree of structural similarity 

may have different surface charge distributions caused by amino acid substitutions, 

ultimately affecting the specificity of their interactions with plant host receptors (Zhang et 

al., 2018). For example, the effector AvrPib is structurally similar to MAX effectors 
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(AvrPikD, AvrPia, etc.), except the protein has a distinct, positively-charged patch and 

hydrophobic core that impacts its avirulence function, nuclear localization, and likely 

how it is recognized (Zhang et al., 2018).Evaluating potential PPIs based on the 

structures’ binding affinity may also be less accurate since the binding affinity of 

interacting effector-host protein domains is not always strong, but may be moderate 

(i.e., AvrPia/RGA5; Ortiz et al., 2017) to weak (AvrPia/Pik1; Varden et al., 2019), 

especially for receptors with generalized recognition roles within the plant. Combining 

recent advances in both sequence and structure-based machine learning models could 

lead to more accurate interaction predictions and intriguing discoveries (Khairi et al., 

2023; Yang et al., 2019; Zheng et al., 2021).  

State-of-the-art computational methods like AlphaFold (Jumper et al., 2021), RoseTTA 

fold (Baek et al., 2021), and ESMFold (Lin et al., 2023) have opened the door for 3D 

protein structure-based inference, and their applicability to PPI prediction is highly 

promising. This study builds on this approach and explores the use of RFdiffusion, a 

generative model based on RoseTTA fold that has undergone fine-tuning for the 

generation of proteinaceous binders using only a query proteins’ structure (from 

experimentation or AlphaFold predictions) and the residues where the interaction is 

most likely to occur (‘hotspots’; Watson et al., 2023). The novelty of RFdiffusion is its 

use of denoising diffusion probabilistic models (DDPMs) which are trained to denoise 

data corrupted with Gaussian noise, and allows the workflow to generate realistic 

backbone structures from the extremely large protein space (Watson et al., 2023; Wu et 

al., 2022; Yim et al., 2023). Another major benefit of the RFdiffusion pipeline is that it 

also includes Protein-MPNN (Dauparas et al., 2022), a robust deep learning-based 

protein sequence design method to predict the amino acid sequence corresponding to 

the generated backbone, and AlphaFold to fold and validate the predicted binder 

structures. From the perspective of PPI prediction, such diffusion models could be used 

to produce a balance of existing and novel protein structures to not only study, but 

develop new protein-based and chemical technologies. However, the use of diffusion to 

predict PPIs has not yet been comprehensively studied in plants. 

 

Despite its very strong results in protein binder design, RFdiffusion has been used in 

relatively few published studies at the time of this publication (Harris et al., 2024; 

Vázquez Torres et al., 2024; Liu et al., 2024). Thus, there is limited information 

regarding best practices to use RFdiffusion for the objective of predicting interspecies 

PPIs. Furthermore, use-cases in organisms that are under-represented in the protein 

sequence space (i.e., UniProtKB) and/or protein structure databases (i.e., PDB)  are 

lacking. This study aims to apply RFdiffusion to generate proteinaceous binders for 

fungal effector proteins, hypothesizing that the sampling process will uncover native, 

interacting host plant proteins. 
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MATERIALS AND METHODS 

The steps in this approach are summarized in Figure 1. 

 

Validation dataset 

Effectors from the rice blast fungus Magnaporthe oryzae were used to validate the 

workflow (Table 1). M. oryzae effectors were chosen for this study as they are relatively 

well-characterized, and the rice/rice blast pathosystem is well-studied. Thus the 

effectors’ interacting rice proteins and active sites were easily retrieved from the 

literature (see Table 1). To query the host proteome, a target database was compiled in 

FoldSeek using the predicted AlphaFold2 (AF2) structures of rice proteins downloaded 

from the AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/; Varadi et 

al., 2024) using the reference proteome (UP000059680; Oryza sativa subsp. Japonica, 

cv. Nipponbare). Of note, the R-genes Pik1 and Pik2 are required for avirulence protein 

recognition in resistant cultivars like cv. Kusuabe. Within the nonresistant Nipponbare 

cultivar, the proteins corresponding to Pik5-NP and Pik6-NP were used as equivalents 

to represent the pair as per the findings of Zhai et al. (2010).  
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Table 1. An overview of the Magnaporthe oryzae effectors used for workflow validation in this 
study. 

Effector PDB Rice PPIs Significant Residues References 

Avr-Piz-t 2LW6 
APIP6, 
APIP10, 
APIP12 

Recognition Site 
K39, K40, K51, K56, 
K63, K74 

Bai et al., (2018) 
Tang et al. (2017) 

Avr1-
CO39 

2MYV RGA4, RGA5 
Protein Binding 
W23, K24, N37, I39, 
T41 

Cesari et al. (2013) 
Ribot et al. (2012) 

Avr-Pii 7PP2 
OsExo70F3, 
OsExo70F2 

Protein Binding 
D45, Y48, H49, Y64, 
F65, N66 
 
Cofactor Binding  
C51, C54, H67, C69 

de la Concepcion et 
al. (2022) 

Avr-PikD 7BNT 
Pik1, 

OsHIPP19 

Protein Binding 
H46, P47, G48, R64, 
D66, A67 
 
Catalytic 
H46 

Varden et al. (2019) 
Maidment et al. 

(2021) 

Avr-Pia 2MYW 
Pik1, RGA4, 

RGA5 

Protein Binding 
R23, F24, D29, Y41, 
36, R43, L38, E58  

 
Recognition Site F24, 
R43 

Ortiz et al. (2017) 
Varden et al. (2019) 

AvrPib 5Z1V 
Pib, 

OsSH3P2 

Protein Binding 
K29, K30, R50, K52, 
K70 

Zhang et al. (2018) 
Xie et al. (2022) 

The effectors were selected for study because they are well-characterized within the rice/rice 

blast fungus pathosystem. The experimental structure of each effector is available within the 

Protein Data Bank (PDB); their interacting rice proteins (rice PPIs) and the residues at the 

interaction interface had also been experimentally determined and previously reported in the 

literature. Note that because the proteins from the reference cultivar Nipponbare were used for 

validation, the cognate Pik5-NP was included instead of Pik1.  
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Binder Generation with Diffusion 

The interacting residues and a PDB file for each effector were used as input for 

RFdiffusion (https://github.com/RosettaCommons/RFdiffusion) to predict the structure of 

proteinaceous binders. The beta model was used to improve the balance between 

alpha helix and beta sheet secondary structures seen in the generated binders, and the 

default number of iterations was used. The binder length and hotspot mode of action 

were explored for their effect on false positive/negative hits and the recall of the 

experimentally validated proteins in rice. The lengths of the binders (contigs) were either 

75, 100, or 150 amino acids. These lengths were chosen based on data from the 

original publication; shorter binders generated during unconditional monomer design 

tended to have higher quality metrics (TM score, r.m.s.d). Other studies have also found 

success in their various objectives using short (typically ≤100 residues) binders (Liu et 

al., 2024; Vázquez Torres et al., 2024). Moreover, the results of this study will show that 

surpassing 150 amino acids in length results in a higher number of false negatives. 

 

Based on the literature (Table 2), the hotspot mode of action was broadly categorized 

into protein-binding, cofactor binding, catalytic site, or recognition site. Protein-binding is 

the most general, including all the residues where an interaction occurs. Cofactor 

binding indicates that the residue participates in binding of a metallic or non-protein 

cofactor. Residues are considered a recognition site if there is evidence that it 

participates in binding to a receptor protein, leading to the propagation of the plant 

response. Catalytic residues directly participate in the catalysis of the ligand. For each 

contig length and mode of action, one hundred binders were generated, as this number 

is manageable for groups with limited computing resources. This process is facilitated 

by the availability of an RFdiffusion notebook on the Google Colab platform. 

 

RFdiffusion outputs a PDB file for each binder which shows the complex formed 

between the input query effector and the predicted binder. According to the RFdiffusion 

GitHub repository, ‘Of all of the hotspots which are identified on the target, 0-20% of 

these hotspots are actually provided to the model and the rest are masked.’ In short, 

RFdiffusion randomly chooses between 0 to 20% of the input hotspots to generate 

potential binders. Thus, for initial filtering, complexes with few (typically less than 2) to 

no interactions at the specified hotspots were excluded from further analysis. An 

interaction was deemed likely to occur if the distance between the binder’s alpha carbon 

(Cα) and the query effectors’ beta carbons (Cβ) was less than 10 Å, based on previous 

studies on the most accurate residue distance metrics for detecting contacts (Bolser et 

al., 2008; Iyer et al., 2020) and data on the recall of PPIs according to different distance 

thresholds (Table 3). While the Cβ–Cβ distance is the most accurate metric, the distance 

between binder Cα and query effectors Cβ was used because RFdiffusion generates 
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structures with all glycine residues. Thus, the binders may reflect a plausible secondary 

structure, but with inaccurate amino acid side chains.  

 

Table 2. A summary of the generated binders and recovered protein-protein interactions from 

the M. oryzae effectors using the workflow. 

Effector PPIs Site 75 100 150 

Avr-Piz-t APIP6, APIP10, APIP12 Protein Binding 2/62 0/56 0/57 

Avr1-CO39 RGA4, RGA5 Protein Binding 5/71 0/64 0/48 

Avr-Pii OsExo70F2, OsExo70F3 
Protein Binding 2/95 5/93 6/90 

Cofactor Binding 2/64 0/54 2/54 

Avr-PikD 
Pik1 (Pik5-NP), 

OsHIPP19 

Protein Binding 8/91 3/81 0/69 

Catalytic Site 3/76 1/71 0/70 

Avr-Pia 
Pik1 (Pik5-NP), RGA4, 

RGA5 

Protein Binding 2/75 0/75 0/66 

Recognition Site 1/60 1/72 0/61 

AvrPib Pib, OsSH3P2 Protein Binding 0/90 1/91 0/77 

The experimentally determined rice PPIs in bold are those that were detected (recovered) by 

the workflow, whereas un-bolded PPIs were not recovered. The fields 75, 100, and 150 refer to 

the amino-acid length of the binders. During the structural similarity search in FoldSeek, query 

binder – target host protein matches were only retained if the pair had a structural bit score ≥ 

50. For each length and type of residues passed during diffusion (site), the numerator is the the 

number of generated binders which returned an anticipated PPI; the denominator is the number 

of generated binders which were acceptable – thus passed to the structural similarity search. 

 

The structures of the acceptable binders were extracted from the PDB files using 

custom scripts in Biopython (ver. 1.83) and passed to FoldSeek to query the custom 

host databases and identify target proteins whose structure was similar to the binder. 

Once again, because RFdiffusion generates structures with all glycine residues, only 

parameters for comparing structural similarity were used in the FoldSeek easy-search 

function. The short length of the binders relative to potential matches also warranted 

certain parameters to reduce the number of false positives. Specifically, the alignment 

was performed based on a minimum 90% coverage of the query binder using the 

TMalign algorithm (Zhang & Skolnick, 2005) within FoldSeek (--alignment-type 1 --cov-

mode 2 -c 0.90). Only proteins with a structural bit score ≥ 50 (the recommended 

threshold; Barrio-Hernandez et al., 2023) were included in subsequent analyses.   
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Table 3. A summary of how the threshold on the distance between the effectors’ alpha carbon 
and binders’ beta carbon affected the number of acceptable binders and positive PPIs. 

 Effector Site 
≤ 8 Å ≤ 10 Å ≤ 12 Å ≤ 14 Å 

75 100 150 75 100 150 75 100 150 75 100 150 

 Avr-Piz-t PB 1/24 0/15 0/15 2/62 0/56 0/57 3/90 0/89 0/78 3/94 0/94 0/90 

 Avr1-CO39 PB 5/68 0/58 0/40 5/71 0/64 0/48 5/73 0/71 0/58 5/84 0/82 0/74 

 Avr-Pii 
PB 1/86 5/88 5/86 2/95 5/93 6/90 2/96 5/96 6/94 2/96 5/96 6/95 

CFB 1/32 0/34 1/39 2/64 0/54 2/54 2/68 0/64 3/66 2/77 2/72 4/69 

 Avr-PikD 
PB 7/84 3/74 0/65 8/91 3/81 0/69 8/91 3/81 0/69 8/91 3/81 0/70 

CAT 3/49 1/48 0/56 3/76 1/71 0/70 3/77 1/71 0/70 3/77 1/71 0/71 

 Avr-Pia 
PB 2/55 0/59 0/46 2/75 0/75 0/66 2/83 0/81 1/75 2/89 0/90 1/85 

REC 0/32 0/36 0/26 1/60 1/72 0/61 1/61 1/77 0/65 2/67 1/78 1/71 

 AvrPib PB 0/58 1/56 0/54 0/90 1/91 0/77 0/93 1/94 0/84 0/94 1/96 0/84 

The fields 75, 100, and 150 refer to the length of the binders in amino acid residues. The sites 

are abbreviated; PB - protein binding, CFB - cofactor binding, CAT - catalytic site, REC - 

substrate recognition site. The fractions indicate the number of generated binders which 

returned the anticipated PPI match (numerator; bit score ≥ 50) and the number of generated 

binders which were acceptable – thus passed to the structural similarity search – (denominator) 

is also shown for each site and binder length.  

 

Functional Enrichment Analysis  

To understand the diversity of the presumptive PPIs during validation, gene ontology 

(GO) enrichments of the rice target proteins were performed using GOATOOLS 

(Klopfenstein et al., 2018) with annotations from the Gene Ontology Meta Annotator for 

Plants (GOMAP; Wimalanathan et al., 2021) as the ground truth. We applied the 

Bonferroni correction to account for multiple comparisons. 

 

RESULTS 

Overall workflow performance on the validation dataset 

A summary of the workflow’s performance for the validation M. oryzae effectors is 

provided in Table 2. The workflow captured 11 out of the 14 experimentally-determined 

PPIs between the M. oryzae effectors and rice proteins. APIP6 and APIP12 were likely 

not recovered because RFdiffusion doesn’t generate backbones with extensive 
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disordered regions, such as those in their AF2 structures that would have prevented 

high confidence detection during the structural similarity search.  

 

The impact of binder length and active site type on the workflow performance 

Due to the limited information on best practices, the binder length, number of generated 

backbone structures, and active site type were explored during validation for their 

downstream impact on the structural similarity search and recall of protein targets 

(Figure 2, 3). We hypothesized that shorter binders may lead to high levels of false 

positives (‘noise’) since they increase the chance of matches occurring at a structure 

that is shared between a wide variety of proteins. Meanwhile longer binders may 

incorporate multiple structural domains that are possible, but ultimately exclude protein 

families important to the study’s objectives (increase false negative rate).  

 

Indeed, the 75 amino acid (aa)-long binders tended to confer the greatest number of 

structurally similar protein matches that also met the threshold (bit score ≥ 50) followed 

by the 100 and 150 aa-long binders, respectively (Figure 2, 3); AVR-Pii was the 

exception (Figure 2). And in many instances, only the 75 aa-long binders captured the 

experimentally-validated PPIs (Table 2). However, the 100 and 150 aa-long binder 

matches were enriched in GO terms that were more specific to the defense/immune 

response against fungi than the 75 aa-long binders (Figure 4). The distribution of the 

structural similarity scores between the binder lengths isare also very similar in most 

cases, yet it does appear that the 75 aa-long binders produced a disproportionately 

larger number of acceptable matches (bit score ≥ 50) than the other binder lengths. 

Interestingly, there was no clear pattern for how the binders’ length influenced the 

number of presumptive interacting host proteins for each individual binder (Figure 5).  

 

This finding supports the hypothesis that shorter binders introduce noise, as there are a 

larger number of acceptable matches with the 75 aa binders, but their functions seem to 

be less specific to the defense/immune response than the 100/150 aa binders’ matches. 

The shorter binders also appear to support the capture of more structurally diverse 

proteins, since the number of unique protein matches per binder was similar across the 

different binder lengths despite the shorter binders producing an overall larger number 

of protein matches. Decreasing the bit score threshold to allow for more flexibility during 

the structural similarity search may increase the recall for the longer binders, but could 

also increase the false positive rate. Generating more binders could also be an option 

as the authors of RFdiffusion recommend diffusing 10,000 binders for a single protein 

target. However, this is likely not feasible for many research groups with limited 

computing resources. Ultimately, the results of this validation study indicate that further 

evidence is needed to identify promising candidates for in vitro and in vivo validation. 
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While the binders would capture multiple expected PPI targets for some effectors, the 

presumptive host protein matches for others varied by the mode of action of the input 

residues. For example, there was not a single binder for Avr-Pia that produced highly 

confident matches for all three anticipated PPIs (RGA4, RGA5, Pik1/Pik5-NP). Using 

protein-binding residues as the RFdiffusion input, one of the 75-residue binders aligned 

with a region of Pik5-NP that is structurally similar to the Heavy Metal Binding domain of 

the Pik-1 protein; this region facilitates the effector’s recognition in blast resistant 

cultivars (Guo et al., 2018). However, for the RGA4/RGA5 heterodimer, a 75-residue 

binder generated from protein-binding residues aligned with the apoptotic protease-

activating factor domain (IPR042197) of RGA4, and the leucine rich repeat (LRR; 

IPR032675) domain of RGA5; only RGA5 was recovered from the binders with input 

recognition residues. This is significant as it corroborates with the literature that RGA4 is 

responsible for activating the apoptotic response pathway whereas RGA5 is only 

sufficient for recognition (Césari et al., 2014).  

 

Identifying promising candidates for in vitro validation 

This validation study revealed two potential methods for selecting the most promising 

candidates. The most evident method is to take advantage of the GO term annotations 

and identify candidates with defense-related annotations that are over-represented in 

the study items. For instance, the PPI pairs could be explored on the basis of a cellular 

compartment of interest, or by the biological processes the effector disrupts. Of note, 

comparing the GO enrichments based on the active site type did reveal slight 

differences in the functions of the captured proteins (Figure 4), though with the small 

sample size of the experimentally validated PPIs, how to best use each active site type 

to further steer PPI predictions is not immediately clear. The disadvantage of this GO-

based method is that it limits the exploration of unannotated or poorly annotated 

proteins.  

 

As an alternative method, promising targets can be identified based on how well the 

binder overlaps with critical domains of the target protein. For instance, there were six 

75 aa-long binders for Avr-PikD which showed structural similarity to Pik5-NP. Its 

homolog in rice blast resistant cultivars, Pik1, has a Heavy Metal (HMA) Binding domain 

which facilitates the effector’s recognition (Guo et al., 2018). In a global alignment, there 

is moderate structural similarity and low sequence similarity between Pik-1 and Pik5-NP 

(alignment length–890 residues, sequence identity–0.502, TM-score–0.6663). However, 

the region of Pik5-NP with structural similarity to the query binder had considerable 

structural similarity to the HMA domain of the Pik-1(Figure 6)(alignment length–67 

residues, sequence identity–0.299, TM-score–0.8037). This finding provides evidence 

that generating these truncated protein segments can uncover important sub-structures 

of proteins that contribute to resistance, even if there is low sequence similarity. Such 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.17.613523doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613523


domain-based evidence could also substantiate target proteins as potential candidates 

for further experimentation. Other examples for query-target pairs aligned within a 

domain important to the host protein’s function are shown in Figure 7. 

 

Discussion 

Diffusion models like RFdiffusion are gaining traction in the field of protein design for 

biomedical applications (Harris et al., 2024; Liu et al., 2024, Vázquez Torres et al., 

2024). To the authors’ knowledge, this is the first study to exploit the generative 

diffusion capabilities for investigating plant-microbe interactions. The presented 

workflow produced a >78% recall of experimental PPIs, and adds to the growing 

literature on effective practices to use diffusion to study PPIs, particularly for under-

represented organisms in protein structural databases. Domain knowledge is still critical 

to decipher PPIs, especially since this workflow could produce improbable presumptive 

host proteins (i.e., due to different cellular localization). Yet further exploration of the 

diverse structures produced during diffusion could be used to develop future research 

directions in plant-microbe interactions, and develop technologies to mitigate fungal 

infection and mycotoxin production. 

 

This workflow could also shed new light on understudied research avenues in plant-

microbe interactions. For example, more information is needed to understand how 

fungal pathogens employ structural homologs to ‘hijack’ the plant stress response for 

nutrient production, promote cell death, and other processes. (Xu et al., 2022; Shi et al., 

2016). Similarly, there is limited information on how effectors are trafficked throughout 

the cell or degraded in planta (Yuen et al., 2023), or how splice variants in plants 

contribute to the biotic stress response against fungi (Tognacca et al., 2023). Producing 

in silico PPI predictions could help guide the research process and reduce the need for 

costly experimentation. 

 

It is important to note that the binders were not validated using ProteinMPNN and AF2, 

as in the original publication. This step was bypassed, as preliminary trials (data not 

shown) found that recovering a binder that fit all the recommended quality metrics 

(pLDDT, pAE, pTM) was extremely difficult. This difficulty was attributed to the low 

representation of plant proteins in the PDB (<4%), which was used to train AF2. As per 

its GitHub page, the default RFdiffusion model has a bias towards producing alpha-

helical structures (hence the reason for using the beta model for a better balance of 

structures). This imbalance is likely because extensive beta sheets are not as prominent 

in species like Homo sapiens (which encompass ~31% of the structures available in the 

PDB). The workflow in this validation study instead proposes using the number of 

interaction hotspots between the binder and query effector, as well as the structural bit 

score to assess the binder structures. Ideally, more plant protein structures will be 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.17.613523doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613523


resolved in the future to improve the balance of training data in structural biology.  

Resolving more fungal protein structures would also be beneficial, as this study had a 

small sample size of fungal effectors due to the limited number of experimentally-

validated PPIs wherein the effectors’ PDB structure and interaction residues were 

recorded in the literature. 

  

Comparing the results of this validation study to previous studies is difficult due to 

differing pathogen-host systems and methodologies. For example, although the 

workflow captured ≥78% of the intended target proteins, the true positive rate is difficult 

to determine without experimental validation of the interactions between the effectors’ 

and the other captured proteins. Two recent studies aimed at developing structure-

based methods for PPI predictions between rice and rice blast fungus - Ma et al. (2019) 

and Zheng et al. (2021) - tackle reporting their results in different ways. Ma et al. (2019) 

used a 10-fold crossover test to validate the performance of their support vector 

machine model at an accuracy of 90.43% for the rice-Magnaporthe oryzae 

pathosystem, though it is worth noting that this model was not assessed at a proteome-

wide scale. Zheng et al. (2021) combined structural and sequence-based (domain, 

interlog) methods to predict PPIs between rice and Magnaporthe oryzae at a proteome-

wide scale, and developed a scoring method to assess the potential PPIs. While the 

authors report a true positive rate of 20.77% (false positive rate 0.10%), the method 

only detected two resistance genes (pi-d2, LOC_Os06g29810; pi-ta, 

LOC_Os12g18360) and did not recover PPIs for most of the effectors in this study (the 

exception being Avr-PikD).  

 

Also, regarding the false positive rate, it is interesting to note that the workflow did not 

capture host proteins that interacted indirectly (i.e., mediated through another protein). 

For example, Pik-1/Pik-2 form homo- and heterodimers, and both proteins are required 

to elicit a cell death response upon recognition of an avirulence protein (Maqbool et al., 

2015). While the interactions involving Pik-1 (Pik5-NP) were recovered, interactions 

between Pik-2 (Pik6-NP) were not. It is not likely that this is due to substantial 

differences in global sequence or structural similarity between the homologs. Using the 

TM-align algorithm, Pik-2 and Pik6-NP appear to have higher structural and sequence 

similarity (alignment length-984 residues, sequence identity-0.802, TM-score-0.9351) 

than Pik-1 and Pik5-NP (alignment length-890 residues, sequence identity-0.502, TM-

score-0.6663). These findings are in line with the literature that reports direct 

interactions between multiple avirulence proteins and Pik-1 (Avr-Pia, Césari et al., 2013; 

Avr-PikD, Kanzaki et al., 2012), whereas direct interactions between avirulence proteins 

and Pik2 are not reported. Kanzaki et al. (2012) even provided experimental evidence 

that Pik-2 and AVR-PikD do not interact directly.  
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Regarding other limitations, this methodology will likely find little success in identifying 

the gamut of non-proteinaceous resistance mechanisms in plants such as lipids 

(Cavaco et al., 2021) or secondary metabolites (Savignac et al., 2023). Moreover, the 

effectors used for validation in this study are well-characterized. Their mode of action, 

binding sites, and structure are well-documented in the literature (Table 2). Applying this 

workflow to plant pathogens that are under-represented in the literature may be more 

difficult, though various strategies could be used to determine protein binding sites 

computationally (i.e., protein language models; Schrieber et al., 2023) or through 

conserved domains (i.e., InterPro; Paysan-Lafosse et al., 2022). Computationally 

determined protein structures (i.e., from AF2 or ESMFold) could have been used 

instead of experimental structures from PDB. However, a thorough study on how the 

quality of computational protein structures affects the diffusion process is needed. 

 

Conclusion 

As the global burden of fungal disease on crops is expected to increase due to climate 

change, there is a need for strategies to prevent, detect, and mitigate fungal pathogens. 

Leveraging the roles and interactions between proteins, which are involved in many 

aspects of fungal invasion and plant defense against fungi, could be indispensable to 

addressing this need. However, there is insufficient validated evidence for PPIs 

between important fungal species and most plant hosts, making a validation set very 

challenging. This study introduced a workflow for in silico predictions of fungal effectors 

and plant proteins guided by structural homology, and including quality metrics for 

assessing the outputs at nearly every stage. In all, the findings demonstrate the ability 

of RFdiffusion to generate structurally diverse binders that still reflect that of actual 

binding pairs. This research will be used to build an interaction database for major crop 

plant-fungal pathogen systems (i.e., Magnaporthe-rice, Fusarium-wheat, Fusarium-

maize, etc.), providing PPIs with experimental evidence from different sources. With 

experimental validation forthcoming, the predictions from this protocol will be made 

publicly available at public databases like MaizeGDB (https://maizegdb.org/; 

Woodhouse et al., 2021), GrainGenes (https://wheat.pw.usda.gov/; Yao et al., 2022), 

and the Fusarium Protein Toolkit (https://fusarium.maizegdb.org ;Kim et al., 2024). 

These efforts will promote research in plant-host interactions, and enable users to easily 

query proteins of interest, investigate their interaction PPIs, and provide visual 3D 

structure networks of the target protein.  
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Figure 1. A summary of the workflow used in this study. Protein binding residues (hotspots) were 
extracted from the literature or from databases of conserved protein binding domains (i.e., InterPro). The 
experimentally validated or predicted hotspots were then passed to RFdiffusion to generate protein 
binders. Since RFdiffusion may not use all the hotspots during diffusion, the binders were filtered based 
on the number of interaction hotspots between the binder and query protein. The rice protein space was 
then searched for proteins with high structural similarity to the binders using FoldSeek. Illustration created 
using the Biorender platform.
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Figure 2. The results for M. oryzae validation proteins according to the protein binding residues that were 
used as input for RFdiffusion. Each panel shows the overall distribution of TM-scores obtained from 
comparing the binders against a database of proteins from Oryzae sativa in FoldSeek, by the amino acid 
length of the binder (left). The number of unique proteins in response to the increasing number of binders is 
shown (right) for the 75, 100, and 150 amino acid long binders. 
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Figure 3. The results for M. oryzae validation proteins according to the protein binding residues that were 
used as input for RFdiffusion. Each panel shows the overall distribution of TM-scores obtained from 
comparing the binders against a database of proteins from Oryzae sativa in FoldSeek, by the amino acid 
length of the binder (left). The number of unique proteins in response to the increasing number of binders is 
shown (right) for the 75, 100, and 150 amino acid long binders. 
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Figure 4. A subset of the enriched gene ontology terms for the rice proteins with structural 
similarity to the generated binders. The enrichments are shown by effector protein, binder length, 
and by the site type of the hotspots passed during diffusion: general protein binding site (blue), 
substrate/effector recognition site (red), active site (green), and cofactor binding site (yellow). 
Enrichments were performed with the Bonferroni adjustment for multiple comparisons and 
significance at P ≤ 0.05. The effectors are referred to by their PDB: 2LW6 (Avr-Piz-t), 2MYV 
(Avr1-CO39), 2MYW (Avr-Pia), 7PP2 (Avr-Pii), 7BNT (Avr-PikD), and 5Z1V (Avr-Pib).
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Figure 5. The distribution of the number of host proteins captured by each effector based on the site 
type passed during diffusion, and the length of the generated binder: 75, 100, or 150 amino acid (aa) 
residues. The site types are color-coded: blue – protein binding site, yellow – substrate recognition 
site, green – active/catalytic site, red – cofactor binding site. The effectors are referred to by their 
PDB: 2LW6 (Avr-Piz-t), 2MYV (Avr1-CO39), 2MYW (Avr-Pia), 7PP2 (Avr-Pii), 7BNT (Avr-PikD), and 
5Z1V (Avr-Pib).
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Figure 6. The structural alignment of the Heavy Metal Associated (HMA) domain of Pik1 (teal) 
with the region of Pik5-NP (orange) with structural similarity to the binders generated with 
RFdiffusion, using the TM-align server. A global structural alignment of the Pik1 and Pik5-NP 
protein indicates there is moderate structural similarity and low sequence similarity between the 
proteins (Alignment length = 890 residues; sequence identity = 0.502; TM-score = 0.6663). 
When, a structural alignment was performed using only the region that overlapped with the 
binder, it was found that the Pik5-NP substructure was highly similar to the HMA domain of Pik1 
(Aligned length = 67 residues; RMSD = 1.81 Å; TM-score 0.80366) but had low sequence 
similarity (sequence identity = 0.299). Pik1 was used as the reference protein to compute the 
TM-score. “:” denotes aligned residue pairs of d < 5.0 Å, “.” denotes other aligned residues.

----MQKIVFKIPMVDDKS---RTKAMSLVAST-VGVHSVAIAGDLRDEVVVVGDGIDSINLVSALRKKVGHAELLQV-----
    ::::::::::::::.   .:::::::::: :::::::::   ::::::::::::::::::::::::::::::::     
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Avr-Pii / OsExo70F2

Aligned length = 73 / 75 a.a.
R.M.S.D = 3.01 Å
TM-score = 0.6242
Prob. = 0.87 
Domain = C-ter exocyst complex 
subunit Exo70

Avr-PikD / OsHIPP19

Aligned length = 75 / 75 a.a.
R.M.S.D = 2.47 Å
TM-score = 0.6627
Prob. = 0.89 
Domain = HMA domain  

Avr-Piz-t / APIP10

Aligned length = 74 / 75 a.a.
R.M.S.D = 2.99 Å
TM-score = 0.5793
Prob. = 0.82 
Domain = BRCA1-associated 2 

Figure 7. A selection of the binders and important domains of the structurally 
similar host proteins. For each host protein (teal), the protein domain (yellow) 
that contains the segment with structural similarity to the binder (orange) is 
shown. During the structural similarity search, the minimum coverage of the 
query binder was 90% (67 a.a.), and TM scores demonstrate the relatively high 
structural similarity of the query-target pair. FoldSeek also reports a probability 
(Prob.) score which reflects the probability that the matches are structurally 
homologous. 
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