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ABSTRACT: Natural proteins are highly optimized for function
but are often difficult to produce at a scale suitable for
biotechnological applications due to poor expression in heterolo-
gous systems, limited solubility, and sensitivity to temperature.
Thus, a general method that improves the physical properties of
native proteins while maintaining function could have wide utility
for protein-based technologies. Here, we show that the deep neural
network ProteinMPNN, together with evolutionary and structural
information, provides a route to increasing protein expression,
stability, and function. For both myoglobin and tobacco etch virus
(TEV) protease, we generated designs with improved expression,
elevated melting temperatures, and improved function. For TEV
protease, we identified multiple designs with improved catalytic activity as compared to the parent sequence and previously reported
TEV variants. Our approach should be broadly useful for improving the expression, stability, and function of biotechnologically
important proteins.

■ INTRODUCTION
Evolution has optimized function over stability in most natural
proteins;1 as a result, they often exhibit poor solubility,
thermostability, and expression in heterologous systems, all of
which reduce the yield of functional protein.2,3 Many protein-
based therapeutics and catalysts are limited in their industrial
application by low stability, making protein stabilization a
research area of increasing interest.4,5 Experimental methods
such as directed evolution have been extensively used to
optimize desirable features in proteins but are often
prohibitively resource- and labor-intensive.6,7 Computational
tools have been developed to achieve the benefits of directed
evolution while minimizing experimental screening.8−11

PROSS (protein repair one-stop shop), for example, utilizes
evolutionary information and Rosetta physics-based energy
calculations to perform sequence redesign using a three-
dimensional (3D) structure as input and has been shown to
increase the soluble expression and thermostability of several
natural proteins.8 More recently, advances in deep learning-
based modeling of proteins have been applied to generate new
variants of natural proteins, including language models that
generate sequences for a given enzyme family or function,11

convolutional neural networks that leverage structural
information for the prediction of gain-of-function mutations,10

and shallow neural networks for guiding combinatorial directed
evolution.12

Deep learning-based tools for protein sequence design have
shown success in the generation of novel proteins with
excellent expression, solubility, and sub-angstrom accuracy to
design models.11,13,14 ProteinMPNN generates highly stable
sequences for designed backbones, and for native backbones, it
generates sequences that are predicted to fold to the intended
structures more confidently than their native sequences.13 We
reasoned that ProteinMPNN could be applied to protein
stability optimization and set out to develop a strategy for
applying ProteinMPNN to natural proteins to increase
solubility and stability. We chose as model systems one of
the first proteins whose structure was solved, the oxygen
storage protein myoglobin, and the widely used protease from
tobacco etch virus (TEV).

■ RESULTS
Protein Stabilization with ProteinMPNN. Pro-

teinMPNN generates amino acid sequences that are predicted
to fold into a given 3D structure. The method is purely
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structure-based and does not have access to functional
information. Therefore, to retain protein function during
sequence design, additional information must be provided to
the network. We experimented with a range of approaches to
retain functionality during the design process. In all targets, to
preserve the catalytic machinery and substrate-binding site, we
fixed the amino acid identities of the first shell functional
positions�defined as those within 7 Å of the substrate in a
ligand-bound crystal structure complex. For TEV protease, we
used evolutionary information to further identify residues
critical to activity. In myoglobin, we performed a limited
backbone redesign to further stabilize the structure. With the
design space selected, we generated sequences with Pro-
teinMPNN, predicted the structures with AlphaFold2,15 and
filtered by the predicted local distance difference test score
(pLDDT) and Cα root-mean-square deviation (RMSD) to the
input structure (Figure 1).

Design of Myoglobin Variants with Increased
Stability. We first applied our design strategy to the model
protein myoglobin. Myoglobin binds heme to carry oxygen in
mammalian muscle tissue,16 and has relevance in clinical
applications as a biomarker,17 as a versatile platform for
biocatalytic applications,18−20 and in food science as an
ingredient in artificial meat products.21−23 Current efforts to
create more stable variants of myoglobin have focused on the
stabilization of the globin fold through stapling with cysteine-
reactive noncanonical amino acids.24,25

We applied the ProteinMPNN design protocol described
above using a crystal structure of human myoglobin, nMb
(PDB: 3RGK).26 To preserve the oxygen storage function, we
fixed the identities of 17 positions located around the heme
ligand in the heme-bound structure (Figure 2A). Sixty
sequences were generated with ProteinMPNN and evaluated
for their likelihood to recapitulate the myoglobin backbone
coordinates using AlphaFold2 single-sequence predictions (see
Supporting Information). Eight of the designs did so with high
confidence (pLDDT > 85.0 and Cα RMSD < 1.0 Å; analogous
single-sequence prediction of the native sequence yielded

pLDDT = 50.6 and Cα RMSD = 7.5 Å). Four designs with
close structural agreement in the heme-binding region were
selected for experimental testing.

We also explored the limited backbone redesign of poorly
ordered regions to attempt to further stabilize the protein. The
globin superfamily, of which myoglobin is a member, has a fold
made up of eight alpha helical regions, with diversity in the
termini and two loop regions flanking the heme-binding
pocket27−29 (Figure S1). We selected these less-conserved loop
regions for backbone remodeling with RoseTTAFold joint
inpainting (Figure 2A).30 We generated two distinct sets of
designs with structural remodeling: one with the region joining
helices E and F redesigned and one additionally including the
CD-loop region (Figure 2A). From these remodeled back-
bones, we again performed sequence design with Pro-
teinMPNN, with the heme-binding site kept fixed as described
above. Following filtering on structure prediction metrics
(Figure S2), an additional 16 sequences were selected for
experimental testing. All 20 tested myoglobin designs have
41−55% sequence identity with the most similar protein (a
myoglobin in all cases) in the UniRef100 database31 (Table
S1).

Synthetic genes encoding the designs and the parent
sequence, nMb, were expressed in E. coli. The heme-loaded
holo-proteins were purified via immobilized metal affinity
chromatography (IMAC) and size exclusion chromatography
(SEC). All designs were expressed and were monomeric by
SEC (Figure 2B). Thirteen of the twenty designs had higher
levels (up to a 4.1-fold increase) of total soluble protein yield
compared to that of native myoglobin (Figure 2C). All 20
designs had similar heme-binding spectra to native myoglobin,
with agreement in the Soret maximum (407−413 nm vs 409
nm in native) and Q-band features (500, 537, 582, and 630
nm), suggesting the preservation of the native heme-binding
mechanism (Figure S3).

The thermal stabilities of eight highly-expressing designs (six
and two designed with and without backbone remodeling,
respectively) were evaluated by circular dichroism (CD)

Figure 1. Design strategy for the optimization of protein expression and stability using ProteinMPNN. The design space is chosen to preserve the
native protein function by fixing the amino acid identities of residues close to the ligand and those that are highly conserved in multiple sequence
alignments. The protein backbone structure and fixed position information are input into ProteinMPNN, which generates new amino acid
sequences likely to fold to the input structure. The backbone structure in loop regions can optionally be remodeled using RoseTTAfold joint
inpainting to further idealize the input protein.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.3c10941
J. Am. Chem. Soc. 2024, 146, 2054−2061

2055

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c10941/suppl_file/ja3c10941_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c10941/suppl_file/ja3c10941_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c10941/suppl_file/ja3c10941_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c10941/suppl_file/ja3c10941_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c10941/suppl_file/ja3c10941_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c10941/suppl_file/ja3c10941_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c10941?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c10941?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c10941?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c10941?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c10941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


spectroscopy. All eight designs had higher melting temper-
atures than that of native myoglobin, with six remaining fully
folded at 95 °C (native myoglobin melts at 80 °C; Figures 2D
and S4). Heme binding was also evaluated over a temperature
gradient to determine the functional thermal stability. All
designs preserved heme binding at higher temperatures than
native myoglobin (as monitored by changes to the Soret band
wavelength and intensity in the UV/vis spectrum), with five
designs maintaining significant heme-binding at 95 °C (Figure
S5). One of the five designs, dnMb19, generated with the more
aggressive backbone remodeling strategy, showed a much
higher thermal stability of heme binding compared to native

myoglobin (Figure 2E). Overall, remodeling regions of the
myoglobin backbone with inpainting increased the success rate
for retaining heme-binding at elevated temperatures.

To understand the structural basis of these improvements in
stability, we determined the crystal structure of dnMb19 (2.0 Å
resolution, PDB: 8U5A). We found that it closely agreed with
the design model (0.66 Å Cα RMSD, Figure 2F), including the
regions remodeled with inpainting. Native side chain contacts
with the heme group are largely preserved in dnMb19 (Figure
2G, inset I). Outside of the heme-binding site, the crystal
structure confirms the structural changes introduced by
inpainting: the C and E helices were elongated as designed

Figure 2. ProteinMPNN design improves myoglobin expression and thermostability. (a) Positions adjacent to the heme were kept fixed during the
sequence design (shown in blue). Non-conserved regions (in yellow) were subjected to backbone remodeling. Inset shows the heme-binding site.
(b) SEC traces of 20 designed myoglobin variants. (c) Soluble yield of myoglobin designs and native myoglobin (nMb, represented as a red dashed
line). (d) CD melting temperature plots of dnMb19 compared to native myoglobin (signal reported in molar residue ellipticity (MRE)). (e)
Absorbance plots of dnMb19 and native myoglobin (inset shows the temperature scan). (f) Structural alignment of the crystal structure (green)
and AlphaFold2 (AF2) prediction (gray) of dnMb19. (g) Overlay of the crystal structure of native myoglobin (gray) and the crystal structure of
dnMb19 (green, PDB: 8U5A). Non-conserved regions displayed in insets II and III were subjected to backbone redesign.
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and connected by a new loop (Figure 2G, inset II); the loop
connecting the E and F helices has a new conformation, and
the F helix was straightened through the replacement of
PRO88 with GLU89 (Figure 2G, inset III). The Cα RMSD
over the inpainted regions between the crystal structure and
the design model is 0.88 Å, with the largest deviation being in
the CD-loop region (1.51 Å). These results illustrate the power
of RoseTTAFold joint inpainting and ProteinMPNN to
accurately remodel native protein backbones while increasing
solubility, thermostability, and functional stability.

Design of TEV Protease Variants with Improved
Stability and Catalytic Activity. To explore the utility of
ProteinMPNN sequence design for stabilizing enzymes, we
next applied our design strategy to the cysteine protease from
tobacco etch virus (TEV). TEV protease is widely used in
biotechnological applications to specifically cleave between
glutamine and serine in its recognition sequence (ENLYFQ/S)

to remove purification tags from recombinant proteins.
However, TEV protease has suboptimal properties, including
low soluble yield from heterologous expression, low thermo-
stability, and poor catalytic activity. These properties often
necessitate long incubation times and result in incomplete
cleavage.32

We applied our sequence design strategy to TEV protease
starting from an autolysis-resistant S219D variant, TEVd
(PDB: 1LVM).33 We defined the active site residues as
described above to be fixed during redesign. We additionally
fixed the amino acid identities of residues that are most
conserved within the protein family (determined from a
sequence alignment generated against UniRef3031), as residues
distant from the active site can contribute significantly to
function.34 We ranked each amino acid identity at each
position by the degree of conservation in the sequence
alignment and varied the percentage of these most highly

Figure 3. ProteinMPNN sequence design improves TEV protease expression, thermostability, and catalytic efficiency. (a) TEVd (PDB: 1LVM)
input structure with positions fixed during redesign highlighted. Active site residues surrounding the substrate (blue), 50% most highly conserved
residues (yellow), and catalytic residues (pink) are highlighted. Inset shows a zoomed-in view of the active site region. (b) SEC traces of the
designed TEV variants. (c) Diagram of TEV substrate (top) and fluorescent gel image of TEV cleavage reactions at various time points (bottom).
(d) CD melting temperature plots of the designed and native TEV (signal reported in molar residue ellipticity (MRE)). (e) Benchtop stability
comparison of native TEVd and the designed variant assessed as activity measured over time incubated at 30 °C before inclusion in the assay. (f)
Decreased evolutionary constraints correlate with higher soluble expression levels. Legend indicates regions fixed during the design (all designs
have the active site fixed). (g) Designs made with the active site and 50% most conserved residues fixed during design exhibited the highest catalytic
activity. Raw apparent rate is reported in relative fluorescence units (RFU) per second.
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conserved residues to fix during sequence redesign between 30
and 70%. We generated four distinct sets of designs that fixed
the amino acid identities of just the active site residues or the
active site residues and 30, 50, and 70% of the most conserved
residues in the TEV family (Figure 3A, see Supporting
Information). A total of 144 sequences were generated with
ProteinMPNN, which were all predicted with high confidence
to fold to the TEV structure by AlphaFold2 (pLDDT > 87.5;
native TEV is predicted with pLDDT = 90) and possess 55 to
85% sequence identity to the parent sequence. All 144 designs
were selected for experimental testing.
Synthetic genes encoding the designs, the parent sequence,

TEVd, and several previously reported TEV variants were
expressed in E. coli, and the resultant proteins were purified via
IMAC and SEC. 134 of 144 designs solubly expressed and
eluted as monomers by SEC (Figure 3B). 129 of 144 designs
exhibited higher levels of soluble expression than TEVd (TEVd
average yield = 1 mg/L culture, design average yield = 20.1
mg/L culture (Figure 3F)).
We evaluated catalytic activity using a previously described7

coumarin derivative with 7-amino-4-trifluoromethylcoumarin
conjugated to the C-terminus of the TEV substrate peptide Ac-
ENLYFQ (Figure S7A). Purified protein was incubated with
the peptide-coumarin substrate, and 64 designs displayed
progress curves with fluorescence above the background,
indicating substrate turnover (Figure S7B and S7C). Designs
made with no evolutionary constraints had improved soluble
expression over the parent but were not active on the peptide
substrate, while designs with the highest activities were
designed with the top 50% most conserved residues fixed
(Figure 3F,G). We performed detailed kinetic analysis of three
highly active designs from the 50% design method�hyper-
TEV56, hyperTEV60, and hyperTEV89�and the parent
sequence TEVd.8 The designs displayed improved catalytic
efficiencies (kcat/Km) compared to TEVd, with up to 26-fold
improvements (Table 1 and Figure S8).
Next, we tested the most active designs with a fusion protein

substrate to assess their performance on the target application
of tag removal. The designs and a set of previously engineered
TEV proteases32,33,35−37 were incubated at 30 °C with the
fusion protein substrate MBP-TEVcs-FKBP-EGFP, where
MBP is the maltose-binding protein, TEVcs is the TEV
peptide cleavage site (ENLYFQS), FKBP is the FK506-binding
protein, and EGFP is an enhanced green fluorescent protein.
The extent of proteolysis was evaluated by monitoring the
accumulation of the cleaved product via sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Fig-
ure S9). Two designs, hyperTEV56 and hyperTEV60,
exhibited significantly higher rates of cleavage of protein
substrate compared to the parent TEVd, yielding 50% cleaved
product at ∼4 h of incubation, while TEVd required 24 h to
reach an equivalent yield. The designs also outperformed other
published TEV variants, with 30% turnover for superTEV, 15%
turnover for TEV1Δ, and 50% turnover for S219V at 24 h of
incubation (Figures 3C and S10A). Straight-line fits of product

accumulation and substrate depletion reveal catalytic efficien-
cies that corroborate those determined in the peptide assay
(Figure S10B). In the peptide assay, the gains in catalytic
efficiency are primarily due to increases in kcat, which could
reflect a higher fraction of enzyme in a catalytically competent
state (see below).

Analysis by CD spectroscopy of TEVd and the most active
design, hyperTEV60, indicated an approximate melting
temperature of 84 °C for hyperTEV60, 40 °C higher than
that of TEVd (Figures 3D and S11), and to the best of our
knowledge, higher than that of any previously described TEV
variant. To further probe the stability of the designed variant,
TEVd and hyperTEV60 were incubated at 30 °C for various
times and then used in the peptide−coumarin cleavage assay.
After 4 h of incubation, hyperTEV60 retained 90% of its
original cleavage activity, while TEVd was reduced to 15% of
its original activity (Figure 3E), indicating a significant
improvement in benchtop stability.

Given that the catalytic and substrate-binding residues were
kept fixed during the design with ProteinMPNN, it is notable
that significant improvements in kcat were observed with both
the peptide and protein substrates. Mutations distal to the
active site can influence catalytic activity through the
stabilization of catalytically productive conformational
states38,39 or global conformational changes.40 To investigate
if the stabilization of functional conformational states may be
involved in activity enhancement, we performed microsecond
molecular dynamics (MD) simulations on TEV−peptide
complexes to probe the impact of the introduced mutations
on the overall protein dynamics. A general rigidification of loop
regions distributed across the structure was observed in designs
compared to TEVd (Figure S12A). This backbone rigid-
ification in distal regions not directly involved in substrate
binding may be related to allosteric improvement of substrate
binding, as reflected by the two- to threefold lower Km values
measured for the designed variants (Table 1). Rigidification in
the region spanning residues 115 to 124 appeared to correlate
with activity; the highest activity design, hyperTEV60, was
most rigid, while TEVd and a design with no activity on the
peptide substrate were the most flexible in this region (Figure
S12B). These trends were also observed in the per-residue
pLDDT analysis of AlphaFold2 ensemble predictions (Figure
S12C). In all designs, we observed a decrease in the population
of catalytically competent conformations of the Cys-His dyad
(dN‑SH) compared to TEVd, but this shift was least significant
in hyperTEV60, in agreement with its higher relative kcat
(Figure S13). These notable differences may begin to explain
how ProteinMPNN enables substantial activity enhancements
without explicit design elements to improve function. It is also
possible that the major contribution to the increase in kcat is
from an increase in the fraction of the protein in the
catalytically competent state more globally.

Table 1. Kinetic Parameters for TEV Redesigns and the Parent TEV Variant

variant kcat (min−1) Km (μM) kcat/Km (μM−1 min−1) fold improvement in kcat/Km over parent

hyperTEV56 0.0106 ± 0.0005 1.4 ± 0.2 0.0077 20
hyperTEV60 0.014 ± 0.002 1.4 ± 0.4 0.01 26
hyperTEV89 0.0050 ± 0.0001 2 ± 1 0.0024 6.2
TEVd 0.0023 ± 0.0003 6 ± 3 0.00039
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■ DISCUSSION
We show that the expression, stability, and function of native
proteins can be improved using ProteinMPNN, guided by the
available sequence and structural information. For both TEV
protease and human myoglobin, multiple variants were
identified that showed higher soluble yield and thermostability
than the native protein. The best of the TEV protease designs
have higher apparent catalytic efficiency on peptide and
protein substrates than the parent enzyme and previously
reported variants. While the optimal number of residues to
maintain (and perhaps enhance) function may have to be
determined empirically for each case, the simplicity of our
procedure and the computational efficiency and ease of use of
ProteinMPNN make this straightforward, and the number of
variants that need to be tested is far smaller than that in typical
experimental screens. We expect that our approach will be
widely useful for improving the expression, stability, and
function of biotechnologically important proteins.
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